Tinghu Zhao, Hanxin Chen, Bin Jia, Yong Zhang, Yuxia Wang, Yunbo Bai
{"title":"Application of 3D Printing Navigation Template Technology in Severe Hallux Valgus Surgery.","authors":"Tinghu Zhao, Hanxin Chen, Bin Jia, Yong Zhang, Yuxia Wang, Yunbo Bai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the application of 3D printed navigation template technology in severe Hallux valgus surgery.</p><p><strong>Methods: </strong>Forty-eight patients with severe Hallux valgus were selected. There were 24 cases in the control group underwent hallux valgus osteotomy using traditional methods and fixed with fully threaded hollow screws during the surgery. There were 24 cases in the 3D group who underwent personalized osteotomy using 3D printing navigation template technology. Patients were followed up regularly for six months after surgery.</p><p><strong>Results: </strong>The surgery time of the 3D group was shorter than that of the control group, and the intraoperative bleeding was reduced (P<0.05). Compared with the preoperative data, the HVA and IMA significantly reduced immediately and 1, 3, and 6 months after surgery (P<0.05). The VAS scores decreased significantly, while the AOFAS and SF-36 scores increased (P<0.05). At three months and six months after surgery, the VAS score of the 3D group was lower than that of the control group, while the SF-36 score was higher (P<0.05). During the follow-up period, both groups had no recurrent cases or complications.</p><p><strong>Conclusions: </strong>The 3D printing navigation template technology improves patients' prognosis, functional recovery, and quality of life.</p>","PeriodicalId":16430,"journal":{"name":"Journal of musculoskeletal & neuronal interactions","volume":"23 4","pages":"448-455"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of musculoskeletal & neuronal interactions","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To explore the application of 3D printed navigation template technology in severe Hallux valgus surgery.
Methods: Forty-eight patients with severe Hallux valgus were selected. There were 24 cases in the control group underwent hallux valgus osteotomy using traditional methods and fixed with fully threaded hollow screws during the surgery. There were 24 cases in the 3D group who underwent personalized osteotomy using 3D printing navigation template technology. Patients were followed up regularly for six months after surgery.
Results: The surgery time of the 3D group was shorter than that of the control group, and the intraoperative bleeding was reduced (P<0.05). Compared with the preoperative data, the HVA and IMA significantly reduced immediately and 1, 3, and 6 months after surgery (P<0.05). The VAS scores decreased significantly, while the AOFAS and SF-36 scores increased (P<0.05). At three months and six months after surgery, the VAS score of the 3D group was lower than that of the control group, while the SF-36 score was higher (P<0.05). During the follow-up period, both groups had no recurrent cases or complications.
Conclusions: The 3D printing navigation template technology improves patients' prognosis, functional recovery, and quality of life.
期刊介绍:
The Journal of Musculoskeletal and Neuronal Interactions (JMNI) is an academic journal dealing with the pathophysiology and treatment of musculoskeletal disorders. It is published quarterly (months of issue March, June, September, December). Its purpose is to publish original, peer-reviewed papers of research and clinical experience in all areas of the musculoskeletal system and its interactions with the nervous system, especially metabolic bone diseases, with particular emphasis on osteoporosis. Additionally, JMNI publishes the Abstracts from the biannual meetings of the International Society of Musculoskeletal and Neuronal Interactions, and hosts Abstracts of other meetings on topics related to the aims and scope of JMNI.