Jiajie Zhang, Guowei Wang, Bo Yan, Ge Yang, Qianqian Yang, Yaqin Hu, Jiuru Guo, Ningning Zhao, Liang Wang, Huijuan Wang
{"title":"Integrative analysis of transcriptome and proteome profiles in primary and recurrent glioblastoma.","authors":"Jiajie Zhang, Guowei Wang, Bo Yan, Ge Yang, Qianqian Yang, Yaqin Hu, Jiuru Guo, Ningning Zhao, Liang Wang, Huijuan Wang","doi":"10.1002/prca.202200085","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastoma (GBM) is the most common and aggressive primary brain tumor characterized by poor prognosis and high recurrence. The underlying molecular mechanism that drives tumor progression and recurrence is unclear. This study is intended to look for molecular and biological changes that play a key role in GBM recurrence.</p><p><strong>Experimental design: </strong>An integrative transcriptomic and proteomic analysis was performed on three primary GBM and three recurrent GBM tissues. Omics analyses were conducted using label-free quantitative proteomics and whole transcriptome sequencing.</p><p><strong>Results: </strong>A significant difference was found between primary GBM and recurrent GBM at the transcriptional level. Similar to other omics studies of cancer, a weak overlap was observed between transcriptome and proteome, and Procollagen C-Endopeptidase Enhancer 2 (PCOLCE2) was observed to be upregulated at mRNA and protein levels. Analysis of public cancer database revealed that high expression of PCOLCE2 is associated with poor prognosis of patients with GBM and that it may be a potential prognostic indicator. Functional and environmental enrichment analyses revealed significantly altered signaling pathways related to energy metabolism, including mitochondrial ATP synthesis-coupled electron transport and oxidative phosphorylation.</p><p><strong>Conclusions and clinical relevance: </strong>This study provides new insights into the recurrence process of GBM through combined transcriptomic and proteomic analyses, complementing the existing GBM transcriptomic and proteomic data and suggesting that integrated multi-omics analyses may reveal new disease features of GBM.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e2200085"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202200085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Glioblastoma (GBM) is the most common and aggressive primary brain tumor characterized by poor prognosis and high recurrence. The underlying molecular mechanism that drives tumor progression and recurrence is unclear. This study is intended to look for molecular and biological changes that play a key role in GBM recurrence.
Experimental design: An integrative transcriptomic and proteomic analysis was performed on three primary GBM and three recurrent GBM tissues. Omics analyses were conducted using label-free quantitative proteomics and whole transcriptome sequencing.
Results: A significant difference was found between primary GBM and recurrent GBM at the transcriptional level. Similar to other omics studies of cancer, a weak overlap was observed between transcriptome and proteome, and Procollagen C-Endopeptidase Enhancer 2 (PCOLCE2) was observed to be upregulated at mRNA and protein levels. Analysis of public cancer database revealed that high expression of PCOLCE2 is associated with poor prognosis of patients with GBM and that it may be a potential prognostic indicator. Functional and environmental enrichment analyses revealed significantly altered signaling pathways related to energy metabolism, including mitochondrial ATP synthesis-coupled electron transport and oxidative phosphorylation.
Conclusions and clinical relevance: This study provides new insights into the recurrence process of GBM through combined transcriptomic and proteomic analyses, complementing the existing GBM transcriptomic and proteomic data and suggesting that integrated multi-omics analyses may reveal new disease features of GBM.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.