Mitochondrial uncoupling proteins regulate the metabolic function of human Sertoli cells.

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Reproduction Pub Date : 2024-01-16 Print Date: 2024-02-01 DOI:10.1530/REP-23-0229
David F Carrageta, Laís Freire-Brito, Bárbara Guerra-Carvalho, Raquel L Bernardino, Bruno S Monteiro, Alberto Barros, Pedro F Oliveira, Mariana P Monteiro, Marco G Alves
{"title":"Mitochondrial uncoupling proteins regulate the metabolic function of human Sertoli cells.","authors":"David F Carrageta, Laís Freire-Brito, Bárbara Guerra-Carvalho, Raquel L Bernardino, Bruno S Monteiro, Alberto Barros, Pedro F Oliveira, Mariana P Monteiro, Marco G Alves","doi":"10.1530/REP-23-0229","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Mitochondrial uncoupling proteins (UCPs) regulate mitochondrial activity and reactive oxygen species production through the transport of protons and metabolites. This study identified the expression of UCPs in human Sertoli cells, which proved to be modulators of their mitochondrial activity.</p><p><strong>Abstract: </strong>Mitochondrial uncoupling proteins (UCPs) are mitochondrial channels responsible for the transport of protons and small molecular substrates across the inner mitochondrial membrane. Altered UCP expression or function is commonly associated with mitochondrial dysfunction and increased oxidative stress, which are both known causes of male infertility. However, UCP expression and function in the human testis remain to be characterized. This study aimed to assess the UCP homologs (UCP1-6) expression and function in primary cultures of human Sertoli cells (hSCs). We identified the mRNA expression of all UCP homologs (UCP1-6) and protein expression of UCP1, UCP2, and UCP3 in hSCs. UCP inhibition by genipin for 24 h decreased hSCs proliferation without causing cytotoxicity (n = 6). Surprisingly, the prolonged UCP inhibition for 24 h decreased mitochondrial membrane potential, oxygen consumption rate (OCR), and endogenous reactive oxygen species (ROS) production. The metabolism of hSCs was also affected as UCP inhibition shifted their metabolism toward an increased pyruvate consumption. Taken together, these findings demonstrate that UCPs play a role as regulators of the mitochondrial function in hSCs, emphasizing their potential as targets in the study of male (in)fertility.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-23-0229","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In brief: Mitochondrial uncoupling proteins (UCPs) regulate mitochondrial activity and reactive oxygen species production through the transport of protons and metabolites. This study identified the expression of UCPs in human Sertoli cells, which proved to be modulators of their mitochondrial activity.

Abstract: Mitochondrial uncoupling proteins (UCPs) are mitochondrial channels responsible for the transport of protons and small molecular substrates across the inner mitochondrial membrane. Altered UCP expression or function is commonly associated with mitochondrial dysfunction and increased oxidative stress, which are both known causes of male infertility. However, UCP expression and function in the human testis remain to be characterized. This study aimed to assess the UCP homologs (UCP1-6) expression and function in primary cultures of human Sertoli cells (hSCs). We identified the mRNA expression of all UCP homologs (UCP1-6) and protein expression of UCP1, UCP2, and UCP3 in hSCs. UCP inhibition by genipin for 24 h decreased hSCs proliferation without causing cytotoxicity (n = 6). Surprisingly, the prolonged UCP inhibition for 24 h decreased mitochondrial membrane potential, oxygen consumption rate (OCR), and endogenous reactive oxygen species (ROS) production. The metabolism of hSCs was also affected as UCP inhibition shifted their metabolism toward an increased pyruvate consumption. Taken together, these findings demonstrate that UCPs play a role as regulators of the mitochondrial function in hSCs, emphasizing their potential as targets in the study of male (in)fertility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体解偶联蛋白调节人支持细胞的代谢功能。
线粒体解偶联蛋白(UCPs)是线粒体通道,负责质子和小分子底物在线粒体内膜上的运输。ucp表达或功能的改变通常与线粒体功能障碍和氧化应激增加有关,这两者都是男性不育的已知原因。然而,UCPs在人类睾丸中的表达和功能仍有待研究。本研究旨在评估UCP同源物(UCP1-6)在人支持细胞(hsc)原代培养中的表达和功能。我们在hsc中鉴定了所有UCP同源物(UCP1-6)的mRNA表达以及UCP1、UCP2和UCP3的蛋白表达。genipin对UCPs抑制24小时可降低hsc的增殖,但不会引起细胞毒性(n = 6)。令人惊讶的是,延长UCPs抑制24小时可降低线粒体膜电位、耗氧率(OCR)和内源性ROS的产生。造血干细胞的代谢也受到影响,因为UCPs抑制使其代谢转向增加的丙酮酸消耗。综上所述,这些发现表明ucp在造血干细胞中作为线粒体功能的调节因子发挥作用,强调了它们作为男性生育能力研究靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
期刊最新文献
REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Gonadal tissue cryopreservation in transgender and gender-diverse people. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: A contemporary review of machine learning to predict adverse pregnancy outcomes from pharmaceuticals, including DDIs. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Trauma-informed reproductive care for transgender and nonbinary people. SON controls mouse early embryonic development by regulating RNA splicing and histone methylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1