{"title":"Face detection based on a human attention guided multi-scale model.","authors":"Marinella Cadoni, Andrea Lagorio, Enrico Grosso","doi":"10.1007/s00422-023-00978-5","DOIUrl":null,"url":null,"abstract":"<p><p>Multiscale models are among the cutting-edge technologies used for face detection and recognition. An example is Deformable part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most relevant to humans.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00978-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiscale models are among the cutting-edge technologies used for face detection and recognition. An example is Deformable part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most relevant to humans.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.