Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities.
{"title":"Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities.","authors":"Soma Biswas, Indhu Philip, Saranya Jayaram, Suma Sarojini","doi":"10.1186/s43141-023-00620-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for sustainable and environment-friendly practices to enhance agricultural productivity is a pressing priority. Endophytic bacteria with plant growth-promoting ability and biocontrol activity can strongly enhance plant growth under changing environmental biotic and abiotic conditions. Herein, we isolated halotolerant endophytic bacteria from an aquatic plant, Alternanthera philoxeroides, from the polluted waters of Madiwala Lake in Bangalore and studied their plant growth promotion (PGP) and biocontrol ability for use as bioinoculant.</p><p><strong>Results: </strong>The isolated bacterial endophytes were screened for salt tolerance ranging from 5 to 15% NaCl concentration. Klebsiella pneumoniae showed halotolerant up to 10% NaCl and Bacillus amyloliquefaciens and Bacillus subtilis showed up to 15%. All three strains demonstrated good PGP abilities such as aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilization, ammonia production, and nitrogen fixation. In addition, K. pneumoniae also exhibited high indoleacetic acid (IAA) production (195.66 ± 2.51 µg/ml) and potassium solubilization (2.13 ± 0.07 ppm). B. amyloliquefaciens and B. subtilis showed good extracellular enzyme production against cellulase, lipase, protease, and amylase. Both the isolates showed a broad spectrum of antimicrobial activity against the tested organisms. The optimization of IAA production by K. pneumoniae was done by the response surface methodology (RSM) tool. Characterization of IAA produced by the isolate was done by gas chromatography-mass spectrometry (GCMS) analysis. The enhanced plant growth-promoting ability of K. pneumoniae was also demonstrated using various growth parameters in a pot trial experiment using the seeds of Vigna unguiculata.</p><p><strong>Conclusion: </strong>The isolated bacterial endophytes reported in this study can be utilized as PGP promotion and biocontrol agents in agricultural applications, to enhance crop yield under salinity stress. The isolate K. pneumoniae may be used as a biofertilizer in sustainable agriculture and more work can be done to optimize the best formulations for its application as a microbial inoculant for crops.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00620-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for sustainable and environment-friendly practices to enhance agricultural productivity is a pressing priority. Endophytic bacteria with plant growth-promoting ability and biocontrol activity can strongly enhance plant growth under changing environmental biotic and abiotic conditions. Herein, we isolated halotolerant endophytic bacteria from an aquatic plant, Alternanthera philoxeroides, from the polluted waters of Madiwala Lake in Bangalore and studied their plant growth promotion (PGP) and biocontrol ability for use as bioinoculant.
Results: The isolated bacterial endophytes were screened for salt tolerance ranging from 5 to 15% NaCl concentration. Klebsiella pneumoniae showed halotolerant up to 10% NaCl and Bacillus amyloliquefaciens and Bacillus subtilis showed up to 15%. All three strains demonstrated good PGP abilities such as aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilization, ammonia production, and nitrogen fixation. In addition, K. pneumoniae also exhibited high indoleacetic acid (IAA) production (195.66 ± 2.51 µg/ml) and potassium solubilization (2.13 ± 0.07 ppm). B. amyloliquefaciens and B. subtilis showed good extracellular enzyme production against cellulase, lipase, protease, and amylase. Both the isolates showed a broad spectrum of antimicrobial activity against the tested organisms. The optimization of IAA production by K. pneumoniae was done by the response surface methodology (RSM) tool. Characterization of IAA produced by the isolate was done by gas chromatography-mass spectrometry (GCMS) analysis. The enhanced plant growth-promoting ability of K. pneumoniae was also demonstrated using various growth parameters in a pot trial experiment using the seeds of Vigna unguiculata.
Conclusion: The isolated bacterial endophytes reported in this study can be utilized as PGP promotion and biocontrol agents in agricultural applications, to enhance crop yield under salinity stress. The isolate K. pneumoniae may be used as a biofertilizer in sustainable agriculture and more work can be done to optimize the best formulations for its application as a microbial inoculant for crops.