{"title":"Suppressing reverberation in cochlear implant stimulus patterns using time-frequency masks based on phoneme groups.","authors":"Kevin Chu, Leslie Collins, Boyla Mainsah","doi":"10.1121/2.0001698","DOIUrl":null,"url":null,"abstract":"<p><p>Cochlear implant (CI) users experience considerable difficulty in understanding speech in reverberant listening environments. This issue is commonly addressed with time-frequency masking, where a time-frequency decomposed reverberant signal is multiplied by a matrix of gain values to suppress reverberation. However, mask estimation is challenging in reverberant environments due to the large spectro-temporal variations in the speech signal. To overcome this variability, we previously developed a phoneme-based algorithm that selects a different mask estimation model based on the underlying phoneme. In the ideal case where knowledge of the phoneme was assumed, the phoneme-based approach provided larger benefits than a phoneme-independent approach when tested in normal-hearing listeners using an acoustic model of CI processing. The current work investigates the phoneme-based mask estimation algorithm in the real-time feasible case where the prediction from a phoneme classifier is used to select the phoneme-specific mask. To further ensure real-time feasibility, both the phoneme classifier and mask estimation algorithm use causal features extracted from within the CI processing framework. We conducted experiments in normal-hearing listeners using an acoustic model of CI processing, and the results showed that the phoneme-specific algorithm benefitted the majority of subjects.</p>","PeriodicalId":88302,"journal":{"name":"Proceedings of meetings on acoustics. Acoustical Society of America","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of meetings on acoustics. Acoustical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0001698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cochlear implant (CI) users experience considerable difficulty in understanding speech in reverberant listening environments. This issue is commonly addressed with time-frequency masking, where a time-frequency decomposed reverberant signal is multiplied by a matrix of gain values to suppress reverberation. However, mask estimation is challenging in reverberant environments due to the large spectro-temporal variations in the speech signal. To overcome this variability, we previously developed a phoneme-based algorithm that selects a different mask estimation model based on the underlying phoneme. In the ideal case where knowledge of the phoneme was assumed, the phoneme-based approach provided larger benefits than a phoneme-independent approach when tested in normal-hearing listeners using an acoustic model of CI processing. The current work investigates the phoneme-based mask estimation algorithm in the real-time feasible case where the prediction from a phoneme classifier is used to select the phoneme-specific mask. To further ensure real-time feasibility, both the phoneme classifier and mask estimation algorithm use causal features extracted from within the CI processing framework. We conducted experiments in normal-hearing listeners using an acoustic model of CI processing, and the results showed that the phoneme-specific algorithm benefitted the majority of subjects.