Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2023-09-26 DOI:10.1007/s10409-023-23211-x
Jiachen Shang  (, ), Heng Yang  (, ), Xuefeng Yao  (, ), Haosen Chen  (, )
{"title":"Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review","authors":"Jiachen Shang \n (,&nbsp;),&nbsp;Heng Yang \n (,&nbsp;),&nbsp;Xuefeng Yao \n (,&nbsp;),&nbsp;Haosen Chen \n (,&nbsp;)","doi":"10.1007/s10409-023-23211-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, flexible pressure and strain sensors have attracted the attention of researchers because of their high sensitivity, broad strain-sensing ability, and various forms. Flexible sensors have essential applications and broad market prospects in fields such as wearable electronics, intelligent machines, and structural health monitoring. At the same time, these emerging fields also require more significant performance requirements for flexible sensors. Conductive rubber composite materials have high tensile strength, high electromechanical sensitivity, and high stability, making them ideal for fabricating of high-performance flexible pressure sensors. Therefore, further improving the performance of conductive flexible rubber composite pressure sensors is developmental focus. In this review, the preparation and electromechanical response mechanisms of conductive polymer composites are summarized, and methods for improving the performance of flexible sensors through structural design are introduced, including conductive network structural design, substrate structural design, and conductive polymer composite structural design. In addition, the main applications of flexible pressure sensors are introduced. Finally, problems in developing flexible sensors are summarized, and future development directions are discussed.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23211-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, flexible pressure and strain sensors have attracted the attention of researchers because of their high sensitivity, broad strain-sensing ability, and various forms. Flexible sensors have essential applications and broad market prospects in fields such as wearable electronics, intelligent machines, and structural health monitoring. At the same time, these emerging fields also require more significant performance requirements for flexible sensors. Conductive rubber composite materials have high tensile strength, high electromechanical sensitivity, and high stability, making them ideal for fabricating of high-performance flexible pressure sensors. Therefore, further improving the performance of conductive flexible rubber composite pressure sensors is developmental focus. In this review, the preparation and electromechanical response mechanisms of conductive polymer composites are summarized, and methods for improving the performance of flexible sensors through structural design are introduced, including conductive network structural design, substrate structural design, and conductive polymer composite structural design. In addition, the main applications of flexible pressure sensors are introduced. Finally, problems in developing flexible sensors are summarized, and future development directions are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橡胶复合材料传感器结构驱动压阻性能设计及应用前景综述
近年来,柔性压力应变传感器以其灵敏度高、应变传感能力广、形式多样等特点引起了研究人员的广泛关注。柔性传感器在可穿戴电子、智能机械、结构健康监测等领域有着重要的应用和广阔的市场前景。同时,这些新兴领域也对柔性传感器的性能要求更为苛刻。导电橡胶复合材料具有高抗拉强度、高机电灵敏度和高稳定性,是制造高性能柔性压力传感器的理想材料。因此,进一步提高导电柔性橡胶复合压力传感器的性能是其发展的重点。本文综述了导电聚合物复合材料的制备及其机电响应机理,介绍了通过结构设计提高柔性传感器性能的方法,包括导电网络结构设计、衬底结构设计和导电聚合物复合材料结构设计。此外,还介绍了柔性压力传感器的主要应用。最后,总结了柔性传感器发展中存在的问题,并对未来的发展方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock Voids and cracks detection in bulk superconductors through magnetic field and displacement signals Introducing and analyzing a periodic pipe-in-pipe model for broadband ultra-low-frequency vibration reduction in fluid-conveying pipes Radiation investigation behind 4.7 km/s shock waves with nitrogen using a square section shock tube The impacts of variable nonlocal, length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1