Catherine Yan , Corinne Kleiner , Aaron Tabigue , Veer Shah , Gregory Sacks , Darshi Shah , Vincent DeStefano
{"title":"PETG: Applications in Modern Medicine","authors":"Catherine Yan , Corinne Kleiner , Aaron Tabigue , Veer Shah , Gregory Sacks , Darshi Shah , Vincent DeStefano","doi":"10.1016/j.engreg.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene terephthalate glycol, PETG, is a miscible, transparent thermoplastic known to have strong tensile properties, high ductility, as well as resistance to heat and chemical insults. PETG may be manufactured in several ways, most notably 3D printing modalities. As such, PETG has emerged as a viable biomaterial for a variety of medical applications such as tissue engineering, dentistry, optometry, vascular health, cardiology, orthopedics, neurology, gynecology, and surgery. PETG also serves a valuable role in biomedical research and engineering by offering improvements in cell studies, drug carriers, and anti-bacterial measures. Further medical research and innovation utilizing PETG will better characterize its value as an inexpensive and versatile biomaterial.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 1","pages":"Pages 45-55"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138123000592/pdfft?md5=04f37dea655efb2f769ed6784a8bd685&pid=1-s2.0-S2666138123000592-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138123000592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylene terephthalate glycol, PETG, is a miscible, transparent thermoplastic known to have strong tensile properties, high ductility, as well as resistance to heat and chemical insults. PETG may be manufactured in several ways, most notably 3D printing modalities. As such, PETG has emerged as a viable biomaterial for a variety of medical applications such as tissue engineering, dentistry, optometry, vascular health, cardiology, orthopedics, neurology, gynecology, and surgery. PETG also serves a valuable role in biomedical research and engineering by offering improvements in cell studies, drug carriers, and anti-bacterial measures. Further medical research and innovation utilizing PETG will better characterize its value as an inexpensive and versatile biomaterial.