Integrated device for multiscale series vibration reduction and energy harvesting

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-11-29 DOI:10.1007/s10483-023-3063-8
Jihou Yang, Weixing Zhang, Xiaodong Yang
{"title":"Integrated device for multiscale series vibration reduction and energy harvesting","authors":"Jihou Yang,&nbsp;Weixing Zhang,&nbsp;Xiaodong Yang","doi":"10.1007/s10483-023-3063-8","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-degree-of-freedom device is proposed, which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose. The device comprises a multiscale nonlinear vibration absorber (NVA) and piezoelectric components. Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives. Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy. Main resonance and higher-order resonance are the main reasons for efficient energy transfer. The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range. Compared with the single structures with and without precompression, the multiscale NVA-piezoelectric device offers significant vibration reduction advantages. In addition, there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 12","pages":"2227 - 2242"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3063-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3063-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-degree-of-freedom device is proposed, which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose. The device comprises a multiscale nonlinear vibration absorber (NVA) and piezoelectric components. Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives. Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy. Main resonance and higher-order resonance are the main reasons for efficient energy transfer. The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range. Compared with the single structures with and without precompression, the multiscale NVA-piezoelectric device offers significant vibration reduction advantages. In addition, there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度串联减振和能量收集集成装置
提出了一种以高效减振为主要目标,以能量收集为次要目的的多自由度装置。该装置由多尺度非线性吸振器(NVA)和压电元件组成。利用能量转换和能量测量方法,从多个角度对器件性能进行评估。研究表明,该装置能有效地从主体结构传递瞬态能量,并将一部分瞬态能量转化为电能。主共振和高阶共振是能量高效传递的主要原因。该装置在激振幅值变化较大的情况下仍能保持较高的减振性能。与带预压缩和不带预压缩的单一结构相比,多尺度nva压电装置具有显著的减振优势。此外,两种子结构的减振和能量收集参数设置也存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1