Novel mode-coupling vibrations of AlN thin film bulk acoustic resonator operating with thickness-extensional mode

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-11-29 DOI:10.1007/s10483-023-3056-6
Zinan Zhao, Nian Li, Yilin Qu, Weiqiu Chen
{"title":"Novel mode-coupling vibrations of AlN thin film bulk acoustic resonator operating with thickness-extensional mode","authors":"Zinan Zhao,&nbsp;Nian Li,&nbsp;Yilin Qu,&nbsp;Weiqiu Chen","doi":"10.1007/s10483-023-3056-6","DOIUrl":null,"url":null,"abstract":"<div><p>The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators (FBARs) are presented to illustrate the mode flip of the thickness-extensional (TE) and 2nd thickness-shear (TSh2) modes. The frequency spectrum quantitative prediction (FSQP) method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs. The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes, which has never been observed in the ZnO FBAR. Besides, the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency. The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR. The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 12","pages":"2187 - 2206"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3056-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators (FBARs) are presented to illustrate the mode flip of the thickness-extensional (TE) and 2nd thickness-shear (TSh2) modes. The frequency spectrum quantitative prediction (FSQP) method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs. The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes, which has never been observed in the ZnO FBAR. Besides, the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency. The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR. The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以厚度扩展模式工作的AlN薄膜体声谐振器的新型模态耦合振动
本文给出了体波在AlN和ZnO薄膜体声谐振器(FBARs)中传播的色散曲线,以说明厚度-拉伸(TE)和第二层厚度-剪切(TSh2)模式的模式翻转。采用频谱定量预测(FSQP)方法求解用于预测AlN和ZnO fbar本征模式耦合强度的频谱。结果表明,TE和TSh2分支的翻转导致了小波数TE和大波数TE模式之间的新自耦合振动,这在ZnO FBAR中从未观察到过。模态翻转导致TE截止频率附近频谱曲线的相对位置发生变化。所得的频谱可用于预测AlN FBAR内各振型的模态耦合行为。所得结论有助于从所有振动模式中区分耦合强度非常弱的AlN FBAR的理想工作模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1