Jennifer L. Proper, Haitao Chu, Purvi Prajapati, Michael D. Sonksen, Thomas A. Murray
{"title":"Network meta analysis to predict the efficacy of an approved treatment in a new indication","authors":"Jennifer L. Proper, Haitao Chu, Purvi Prajapati, Michael D. Sonksen, Thomas A. Murray","doi":"10.1002/jrsm.1683","DOIUrl":null,"url":null,"abstract":"<p>Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not widely used in practice. Instead, repurposing decisions are often based on subjective judgments from limited empirical evidence. In this article, we develop a novel Bayesian network meta-analysis (NMA) framework that can predict the efficacy of an approved treatment in a new indication and thereby identify candidate treatments for repurposing. We obtain predictions using two main steps: first, we use standard NMA modeling to estimate average relative effects from a network comprised of treatments studied in both indications in addition to one treatment studied in only one indication. Then, we model the correlation between relative effects using various strategies that differ in how they model treatments across indications and within the same drug class. We evaluate the predictive performance of each model using a simulation study and find that the model minimizing root mean squared error of the posterior median for the candidate treatment depends on the amount of available data, the level of correlation between indications, and whether treatment effects differ, on average, by drug class. We conclude by discussing an illustrative example in psoriasis and psoriatic arthritis and find that the candidate treatment has a high probability of success in a future trial.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 2","pages":"242-256"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1683","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not widely used in practice. Instead, repurposing decisions are often based on subjective judgments from limited empirical evidence. In this article, we develop a novel Bayesian network meta-analysis (NMA) framework that can predict the efficacy of an approved treatment in a new indication and thereby identify candidate treatments for repurposing. We obtain predictions using two main steps: first, we use standard NMA modeling to estimate average relative effects from a network comprised of treatments studied in both indications in addition to one treatment studied in only one indication. Then, we model the correlation between relative effects using various strategies that differ in how they model treatments across indications and within the same drug class. We evaluate the predictive performance of each model using a simulation study and find that the model minimizing root mean squared error of the posterior median for the candidate treatment depends on the amount of available data, the level of correlation between indications, and whether treatment effects differ, on average, by drug class. We conclude by discussing an illustrative example in psoriasis and psoriatic arthritis and find that the candidate treatment has a high probability of success in a future trial.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.