Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting the NF-κB and TGF-β1/Smad2/3 pathways.

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2023-11-20 Epub Date: 2023-12-03 DOI:10.1080/01902148.2023.2286465
Wei Hao, Ting-Ting Yu, Dong-Ze Zuo, Heng-Zhao Hu, Ping-Ping Zhou
{"title":"Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting the NF-κB and TGF-β1/Smad2/3 pathways.","authors":"Wei Hao, Ting-Ting Yu, Dong-Ze Zuo, Heng-Zhao Hu, Ping-Ping Zhou","doi":"10.1080/01902148.2023.2286465","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. <b>Methods:</b> In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1β, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-β1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-β1/Smad2/3 pathway in lung tissues. <b>Results:</b> STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1β, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-β1/Smad2/3 pathways. <b>Conclusion:</b> STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-β1/Smad2/3 pathway, thereby improving BLM-induced PF.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"49 1","pages":"205-219"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2286465","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1β, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-β1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-β1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1β, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-β1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-β1/Smad2/3 pathway, thereby improving BLM-induced PF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甜菊苷通过激活Nrf2通路,抑制NF-κB和TGF-β1/Smad2/3通路,减轻博来霉素诱导的肺纤维化。
目的:探讨甜菊糖甙(STE)对肺纤维化(PF)的影响及其可能机制。方法:采用单次气管内注射博来霉素(BLM, 3mg /kg)建立PF小鼠模型。试验分为4组:对照组、BLM组和STE处理组(STE 50和100 mg/kg)。采用ELISA和生化试验检测TNF-α、IL-1β、IL-6、NO、羟脯氨酸(HYP)、SOD、GSH、MDA水平。HE染色、Masson染色观察肺组织病理改变及胶原沉积。免疫组化检测胶原I-、胶原III-、TGF-β1-和p- smad2 /3阳性细胞的水平。Western blot检测肺组织上皮-间质转化(epithelial-mesenchymal transition, EMT)标志物α-SMA、vimentin、E-cadherin、ZO-1以及核因子红细胞2相关因子2 (Nrf2)通路、核转录因子-κB (NF-κB)通路、TGF-β1/Smad2/3通路相关蛋白的表达。结果:STE显著减轻blm诱导小鼠的体重减轻和肺损伤,降低HYP水平,降低I型胶原和iii型胶原阳性细胞水平,从而减少细胞外基质(ECM)沉积。此外,STE显著改善了氧化应激(MDA水平降低,SOD和GSH活性增强),炎症反应(TNF-α、IL-1β、IL-6和NO水平降低)和EMT (α-SMA和vimentin表达下调,E-cadherin和ZO-1表达上调)。进一步的机制分析表明,STE可激活Nrf2通路,抑制NF-κB和TGF-β1/Smad2/3通路。结论:STE可能通过激活Nrf2通路减轻氧化应激,通过下调NF-κB通路抑制炎症反应,通过阻断TGF-β1/Smad2/3通路抑制EMT进展,从而改善blm诱导的PF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1