Mat Goebel, Lauren M Westafer, Stephanie A Ayala, El Ragone, Scott J Chapman, Masood R Mohammed, Marc R Cohen, James T Niemann, Marc Eckstein, Stephen Sanko, Nichole Bosson
{"title":"A Novel Algorithm for Improving the Prehospital Diagnostic Accuracy of ST-Segment Elevation Myocardial Infarction.","authors":"Mat Goebel, Lauren M Westafer, Stephanie A Ayala, El Ragone, Scott J Chapman, Masood R Mohammed, Marc R Cohen, James T Niemann, Marc Eckstein, Stephen Sanko, Nichole Bosson","doi":"10.1017/S1049023X23006635","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Early detection of ST-segment elevation myocardial infarction (STEMI) on the prehospital electrocardiogram (ECG) improves patient outcomes. Current software algorithms optimize sensitivity but have a high false-positive rate. The authors propose an algorithm to improve the specificity of STEMI diagnosis in the prehospital setting.</p><p><strong>Methods: </strong>A dataset of prehospital ECGs with verified outcomes was used to validate an algorithm to identify true and false-positive software interpretations of STEMI. Four criteria implicated in prior research to differentiate STEMI true positives were applied: heart rate <130, QRS <100, verification of ST-segment elevation, and absence of artifact. The test characteristics were calculated and regression analysis was used to examine the association between the number of criteria included and test characteristics.</p><p><strong>Results: </strong>There were 44,611 cases available. Of these, 1,193 were identified as STEMI by the software interpretation. Applying all four criteria had the highest positive likelihood ratio of 353 (95% CI, 201-595) and specificity of 99.96% (95% CI, 99.93-99.98), but the lowest sensitivity (14%; 95% CI, 11-17) and worst negative likelihood ratio (0.86; 95% CI, 0.84-0.89). There was a strong correlation between increased positive likelihood ratio (r<sup>2</sup> = 0.90) and specificity (r<sup>2</sup> = 0.85) with increasing number of criteria.</p><p><strong>Conclusions: </strong>Prehospital ECGs with a high probability of true STEMI can be accurately identified using these four criteria: heart rate <130, QRS <100, verification of ST-segment elevation, and absence of artifact. Applying these criteria to prehospital ECGs with software interpretations of STEMI could decrease false-positive field activations, while also reducing the need to rely on transmission for physician over-read. This can have significant clinical and quality implications for Emergency Medical Services (EMS) systems.</p>","PeriodicalId":20400,"journal":{"name":"Prehospital and Disaster Medicine","volume":" ","pages":"37-44"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prehospital and Disaster Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S1049023X23006635","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Early detection of ST-segment elevation myocardial infarction (STEMI) on the prehospital electrocardiogram (ECG) improves patient outcomes. Current software algorithms optimize sensitivity but have a high false-positive rate. The authors propose an algorithm to improve the specificity of STEMI diagnosis in the prehospital setting.
Methods: A dataset of prehospital ECGs with verified outcomes was used to validate an algorithm to identify true and false-positive software interpretations of STEMI. Four criteria implicated in prior research to differentiate STEMI true positives were applied: heart rate <130, QRS <100, verification of ST-segment elevation, and absence of artifact. The test characteristics were calculated and regression analysis was used to examine the association between the number of criteria included and test characteristics.
Results: There were 44,611 cases available. Of these, 1,193 were identified as STEMI by the software interpretation. Applying all four criteria had the highest positive likelihood ratio of 353 (95% CI, 201-595) and specificity of 99.96% (95% CI, 99.93-99.98), but the lowest sensitivity (14%; 95% CI, 11-17) and worst negative likelihood ratio (0.86; 95% CI, 0.84-0.89). There was a strong correlation between increased positive likelihood ratio (r2 = 0.90) and specificity (r2 = 0.85) with increasing number of criteria.
Conclusions: Prehospital ECGs with a high probability of true STEMI can be accurately identified using these four criteria: heart rate <130, QRS <100, verification of ST-segment elevation, and absence of artifact. Applying these criteria to prehospital ECGs with software interpretations of STEMI could decrease false-positive field activations, while also reducing the need to rely on transmission for physician over-read. This can have significant clinical and quality implications for Emergency Medical Services (EMS) systems.
期刊介绍:
Prehospital and Disaster Medicine (PDM) is an official publication of the World Association for Disaster and Emergency Medicine. Currently in its 25th volume, Prehospital and Disaster Medicine is one of the leading scientific journals focusing on prehospital and disaster health. It is the only peer-reviewed international journal in its field, published bi-monthly, providing a readable, usable worldwide source of research and analysis. PDM is currently distributed in more than 55 countries. Its readership includes physicians, professors, EMTs and paramedics, nurses, emergency managers, disaster planners, hospital administrators, sociologists, and psychologists.