Replenishing NAD+ content reduces aspects of striated muscle disease in a dog model of Duchenne muscular dystrophy.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Skeletal Muscle Pub Date : 2023-12-04 DOI:10.1186/s13395-023-00328-w
Déborah Cardoso, Inès Barthélémy, Stéphane Blot, Antoine Muchir
{"title":"Replenishing NAD<sup>+</sup> content reduces aspects of striated muscle disease in a dog model of Duchenne muscular dystrophy.","authors":"Déborah Cardoso, Inès Barthélémy, Stéphane Blot, Antoine Muchir","doi":"10.1186/s13395-023-00328-w","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD<sup>+</sup>) cellular content could be a critical determinant for striated muscle function. We showed here that NAD<sup>+</sup> content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD<sup>+</sup> co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD<sup>+</sup> content using nicotinamide (NAM), a natural NAD<sup>+</sup> precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-023-00328-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for striated muscle function. We showed here that NAD+ content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD+ content using nicotinamide (NAM), a natural NAD+ precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
补充NAD+含量可减少杜氏肌营养不良犬横纹肌疾病。
杜氏肌营养不良症(DMD)是一种由DMD基因突变和肌营养不良蛋白缺失引起的x连锁疾病,最终导致肌纤维膜脆性和坏死,最终导致肌肉萎缩和收缩。受影响的男孩通常在他们的第二个或第三个十年死于呼吸衰竭或心肌病。在已开发的DMD治疗策略中,基因治疗方法部分恢复微肌营养不良蛋白或准肌营养不良蛋白的表达。然而,尽管广泛尝试开发DMD的明确治疗方法,但标准的护理仍然是皮质类固醇,它只有姑息性的益处。动物模型在DMD发病机制和治疗发展的研究中发挥了关键作用。金毛寻回犬肌肉萎缩症(GRMD)犬表现出与DMD进展过程一致的表型。因此,犬类研究可能更好地适用于人类。最近的研究表明,烟酰胺腺嘌呤二核苷酸(NAD+)细胞含量可能是横纹肌功能的关键决定因素。我们在这里发现,GRMD横纹肌中NAD+含量降低,导致NAD+共底物酶PARP-1的改变。此外,我们发现,使用烟酰胺(NAM)(一种天然NAD+前体)提高NAD+含量,可以适度减少横纹肌疾病的各个方面。总的来说,我们的结果为DMD提供了机制上的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Skeletal Muscle
Skeletal Muscle CELL BIOLOGY-
CiteScore
9.10
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊介绍: The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators. Main areas of interest include: -differentiation of skeletal muscle- atrophy and hypertrophy of skeletal muscle- aging of skeletal muscle- regeneration and degeneration of skeletal muscle- biology of satellite and satellite-like cells- dystrophic degeneration of skeletal muscle- energy and glucose homeostasis in skeletal muscle- non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies- maintenance of neuromuscular junctions- roles of ryanodine receptors and calcium signaling in skeletal muscle- roles of nuclear receptors in skeletal muscle- roles of GPCRs and GPCR signaling in skeletal muscle- other relevant aspects of skeletal muscle biology. In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission. Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.
期刊最新文献
Muscle degeneration in aging Drosophila flies: the role of mechanical stress. Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy. Age-related differences in the loss and recovery of serial sarcomere number following disuse atrophy in rats. AAV-NRIP gene therapy ameliorates motor neuron degeneration and muscle atrophy in ALS model mice. ASM is a therapeutic target in dermatomyositis by regulating the differentiation of naive CD4 + T cells into Th17 and Treg subsets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1