{"title":"Automatic Detection of AMD and DME Retinal Pathologies Using Deep Learning.","authors":"Latifa Saidi, Hajer Jomaa, Haddad Zainab, Hsouna Zgolli, Sonia Mabrouk, Désiré Sidibé, Hedi Tabia, Nawres Khlifa","doi":"10.1155/2023/9966107","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic macular edema (DME) and age-related macular degeneration (AMD) are two common eye diseases. They are often undiagnosed or diagnosed late. This can result in permanent and irreversible vision loss. Therefore, early detection and treatment of these diseases can prevent vision loss, save money, and provide a better quality of life for individuals. Optical coherence tomography (OCT) imaging is widely applied to identify eye diseases, including DME and AMD. In this work, we developed automatic deep learning-based methods to detect these pathologies using SD-OCT scans. The convolutional neural network (CNN) from scratch we developed gave the best classification score with an accuracy higher than 99% on Duke dataset of OCT images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2023 ","pages":"9966107"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9966107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic macular edema (DME) and age-related macular degeneration (AMD) are two common eye diseases. They are often undiagnosed or diagnosed late. This can result in permanent and irreversible vision loss. Therefore, early detection and treatment of these diseases can prevent vision loss, save money, and provide a better quality of life for individuals. Optical coherence tomography (OCT) imaging is widely applied to identify eye diseases, including DME and AMD. In this work, we developed automatic deep learning-based methods to detect these pathologies using SD-OCT scans. The convolutional neural network (CNN) from scratch we developed gave the best classification score with an accuracy higher than 99% on Duke dataset of OCT images.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics