Optimum iron-pyrophosphate electronic coupling to improve electrochemical water splitting and charge storage

IF 4.703 3区 材料科学 Nanoscale Research Letters Pub Date : 2023-12-04 DOI:10.1186/s11671-023-03937-y
Rishabh Srivastava, Himanshu Chaudhary, Anuj Kumar, Felipe M. de Souza, Sanjay R. Mishra, Felio Perez, Ram K. Gupta
{"title":"Optimum iron-pyrophosphate electronic coupling to improve electrochemical water splitting and charge storage","authors":"Rishabh Srivastava,&nbsp;Himanshu Chaudhary,&nbsp;Anuj Kumar,&nbsp;Felipe M. de Souza,&nbsp;Sanjay R. Mishra,&nbsp;Felio Perez,&nbsp;Ram K. Gupta","doi":"10.1186/s11671-023-03937-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tuning the electronic properties of transition metals using pyrophosphate (P<sub>2</sub>O<sub>7</sub>) ligand moieties can be a promising approach to improving the electrochemical performance of water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed. Herein, we grow NiP<sub>2</sub>O<sub>7</sub>, CoP<sub>2</sub>O<sub>7</sub>, and FeP<sub>2</sub>O<sub>7</sub> nanoparticles on conductive Ni-foam using a hydrothermal procedure. The results indicated that, among all the prepared samples, FeP<sub>2</sub>O<sub>7</sub> exhibited outstanding oxygen evolution reaction and hydrogen evolution reaction with the least overpotential of 220 and 241 mV to draw a current density of 10 mA/cm<sup>2</sup>. Theoretical studies indicate that the optimal electronic coupling of the Fe site with pyrophosphate enhances the overall electronic properties of FeP<sub>2</sub>O<sub>7</sub>, thereby enhancing its electrochemical performance in water splitting. Further investigation of these materials found that NiP<sub>2</sub>O<sub>7</sub> had the highest specific capacitance and remarkable cycle stability due to its high crystallinity as compared to FeP<sub>2</sub>O<sub>7</sub>, having a higher percentage composition of Ni on the Ni-foam, which allows more Ni to convert into its oxidation states and come back to its original oxidation state during supercapacitor testing. This work shows how to use pyrophosphate moieties to fabricate non-noble metal-based electrode materials to achieve good performance in electrocatalytic splitting water and supercapacitors.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03937-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning the electronic properties of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to improving the electrochemical performance of water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed. Herein, we grow NiP2O7, CoP2O7, and FeP2O7 nanoparticles on conductive Ni-foam using a hydrothermal procedure. The results indicated that, among all the prepared samples, FeP2O7 exhibited outstanding oxygen evolution reaction and hydrogen evolution reaction with the least overpotential of 220 and 241 mV to draw a current density of 10 mA/cm2. Theoretical studies indicate that the optimal electronic coupling of the Fe site with pyrophosphate enhances the overall electronic properties of FeP2O7, thereby enhancing its electrochemical performance in water splitting. Further investigation of these materials found that NiP2O7 had the highest specific capacitance and remarkable cycle stability due to its high crystallinity as compared to FeP2O7, having a higher percentage composition of Ni on the Ni-foam, which allows more Ni to convert into its oxidation states and come back to its original oxidation state during supercapacitor testing. This work shows how to use pyrophosphate moieties to fabricate non-noble metal-based electrode materials to achieve good performance in electrocatalytic splitting water and supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化焦磷酸铁电子耦合改善电化学水分解和电荷存储。
利用焦磷酸盐(P2O7)配体部分来调整过渡金属的电子特性是一种很有前途的方法,可以改善水电解槽和超级电容器的电化学性能,尽管这种材料的结构很少暴露。本文采用水热法在导电泡沫镍上生长NiP2O7、CoP2O7和FeP2O7纳米颗粒。结果表明:在所制备的样品中,FeP2O7表现出明显的析氧反应和析氢反应,过电位最小,为220和241 mV,电流密度为10 mA/cm2;理论研究表明,Fe位点与焦磷酸盐的最佳电子耦合提高了FeP2O7的整体电子性能,从而提高了其在水分解中的电化学性能。对这些材料的进一步研究发现,与FeP2O7相比,NiP2O7具有最高的比电容和显著的循环稳定性,因为它的高结晶度,在Ni-foam上具有更高百分比的Ni成分,这使得更多的Ni在超级电容器测试中转化为其氧化态并回到其原始氧化态。这项工作展示了如何使用焦磷酸盐部分来制造非贵金属基电极材料,以在电催化裂解水和超级电容器中获得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity Viscoelastic modelling and analysis of two-dimensional woven CNT-based multiscale fibre reinforced composite material system InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays Transport properties of mechanochemically synthesized copper (I) selenide for potential applications in energy conversion and storage Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1