Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-01 Epub Date: 2023-12-05 DOI:10.1017/S0967199423000552
Maria Mangini, Nunzia Limatola, Maria Antonietta Ferrara, Giuseppe Coppola, Jong Tai Chun, Anna Chiara De Luca, Luigia Santella
{"title":"Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization.","authors":"Maria Mangini, Nunzia Limatola, Maria Antonietta Ferrara, Giuseppe Coppola, Jong Tai Chun, Anna Chiara De Luca, Luigia Santella","doi":"10.1017/S0967199423000552","DOIUrl":null,"url":null,"abstract":"<p><p>The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca<sup>2+</sup> signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca<sup>2+</sup> release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199423000552","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用拉曼光谱评价海胆卵受精时f -肌动蛋白的变化。
棘皮动物卵母细胞和卵子表面的肌动蛋白丝在减数分裂成熟和受精过程中容易进行大量重组。在海胆卵中,肌动蛋白细胞骨架对受精精子的反应足够快,可以伴随Ca2+信号并引导精子进入卵子。尽管最近使用活细胞成像技术证实了受精卵中肌动蛋白聚合状态的变化,正如之前使用光学和电子显微镜所显示的那样,但它未能提供实验证据证明f -肌动蛋白在受精后几秒钟解聚,这与精子诱导的Ca2+释放同时发生。在本研究中,我们应用拉曼显微光谱学来解决这个问题,通过检查卵子在用肌动蛋白药物或受精精子处理卵子前后的质下区域的光谱特征。在受精后的早期(15 s)和后期(15 min),拉曼光谱的特定峰移显示了肌动蛋白结构的变化,拉曼成像检测了共聚焦显微镜下LifeAct-GFP可视化的f -肌动蛋白重组所对应的细胞骨架变化。我们的观察表明,应用拉曼光谱,不需要显微注射荧光探针和外源基因表达,可能是一种替代甚至是有利的方法,可以揭示难以解决的质下肌动蛋白细胞骨架的快速微妙变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1