{"title":"A network model for gas invasion into porous media filled with yield-stress fluid","authors":"A. Pourzahedi , I.A. Frigaard","doi":"10.1016/j.jnnfm.2023.105155","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the gas invasion into a porous medium filled with a yield-stress fluid. A pore–throat network model is employed to represent the porous media, and a semi-analytical approach is used for simulating the gas propagation. The effect of throat radii, fluid yield stress and network size on the exit time and gas volume fraction retained inside the porous medium are explored. The stability of the network in response to inflow perturbations is also examined. The uniform network appears to be optimal from the perspective of preventing flow.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"323 ","pages":"Article 105155"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025723001684","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the gas invasion into a porous medium filled with a yield-stress fluid. A pore–throat network model is employed to represent the porous media, and a semi-analytical approach is used for simulating the gas propagation. The effect of throat radii, fluid yield stress and network size on the exit time and gas volume fraction retained inside the porous medium are explored. The stability of the network in response to inflow perturbations is also examined. The uniform network appears to be optimal from the perspective of preventing flow.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.