{"title":"Analogue gravity and the Hawking effect: historical perspective and literature review","authors":"Carla R. Almeida, Maxime J. Jacquet","doi":"10.1140/epjh/s13129-023-00063-2","DOIUrl":null,"url":null,"abstract":"<div><p>Reasoning by analogies permeates theoretical developments in physics and astrophysics, motivated by the unreachable nature of many phenomena at play. For example, analogies have been used to understand black hole physics, leading to the development of a thermodynamic theory for these objects and the discovery of the Hawking effect. The latter, which results from quantum field theory on black hole space-times, changed the way physicists approached this subject: what had started as a mere aid to understanding becomes a possible source of evidence via the research programme of “analogue gravity” that builds on analogue models for field effects. Some of these analogue models may and can be realised in the laboratory, allowing experimental tests of field effects. Here, we present a historical perspective on the connection between the Hawking effect and analogue models. We also present a literature review of current research, bringing history and contemporary physics together. We argue that the history of analogue gravity and the Hawking effect is divided into three distinct phases based on how and why analogue models have been used to investigate fields in the vicinity of black holes. Furthermore, we find that modern research signals a transition to a new phase, where the impetus for the use of analogue models has surpassed the problem they were originally designed to solve.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"48 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-023-00063-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Reasoning by analogies permeates theoretical developments in physics and astrophysics, motivated by the unreachable nature of many phenomena at play. For example, analogies have been used to understand black hole physics, leading to the development of a thermodynamic theory for these objects and the discovery of the Hawking effect. The latter, which results from quantum field theory on black hole space-times, changed the way physicists approached this subject: what had started as a mere aid to understanding becomes a possible source of evidence via the research programme of “analogue gravity” that builds on analogue models for field effects. Some of these analogue models may and can be realised in the laboratory, allowing experimental tests of field effects. Here, we present a historical perspective on the connection between the Hawking effect and analogue models. We also present a literature review of current research, bringing history and contemporary physics together. We argue that the history of analogue gravity and the Hawking effect is divided into three distinct phases based on how and why analogue models have been used to investigate fields in the vicinity of black holes. Furthermore, we find that modern research signals a transition to a new phase, where the impetus for the use of analogue models has surpassed the problem they were originally designed to solve.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.