{"title":"Isoprene Production and Its Driving Factors in the Northwest Pacific Ocean","authors":"Jian Wang, Hong-Hai Zhang, Dennis Booge, Yue-Qi Zhang, Xiao-Jun Li, Ying-Cui Wu, Jia-Wei Zhang, Zhao-Hui Chen","doi":"10.1029/2023GB007841","DOIUrl":null,"url":null,"abstract":"<p>Marine isoprene plays a crucial role in the formation of secondary organic aerosol within the remote marine boundary layer. Due to scarce field measurements of oceanic isoprene and limited laboratory-based studies of isoprene production, assessing the importance of marine isoprene on atmospheric chemistry and climate is challenging. Calculating in-field isoprene production rates is a crucial step to predict marine isoprene concentrations and the subsequent emissions to the atmosphere. The distribution, sources, and dominant environmental factors of isoprene were determined in the Northwest Pacific Ocean in 2019. The nutrient enrichment in the Kuroshio Oyashio Extension (KOE) surface seawater, driven by the upwelling and atmospheric deposition, promoted the growth of phytoplankton and elevated the isoprene concentration. This was confirmed by observed responses of isoprene to nutrients and aerosol dust additions in a ship-based incubation experiment, where the isoprene concentrations increased by 70% (<i>t</i> = 4.417, <i>p</i> < 0.001) and 35% (<i>t</i> = 2.387, <i>p</i> < 0.05), respectively. Biogenic isoprene production rates in the deck incubation experiments were positively related to chlorophyll <i>a</i>, temperature, and solar radiation, with an average production of 7.33 ± 4.27 pmol L<sup>−1</sup> day<sup>−1</sup>. Photochemical degradation of dissolved organic matter was likely an abiotic source of isoprene, contributing to approximately 14% of the total production. Driven by high isoprene production and extreme physical disturbance, the KOE showed very high emissions of isoprene of 46.0 ± 13.0 nmol m<sup>−2</sup> day<sup>−1</sup>, which led to a significant influence on the oxidative capacity of the local atmosphere.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007841","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine isoprene plays a crucial role in the formation of secondary organic aerosol within the remote marine boundary layer. Due to scarce field measurements of oceanic isoprene and limited laboratory-based studies of isoprene production, assessing the importance of marine isoprene on atmospheric chemistry and climate is challenging. Calculating in-field isoprene production rates is a crucial step to predict marine isoprene concentrations and the subsequent emissions to the atmosphere. The distribution, sources, and dominant environmental factors of isoprene were determined in the Northwest Pacific Ocean in 2019. The nutrient enrichment in the Kuroshio Oyashio Extension (KOE) surface seawater, driven by the upwelling and atmospheric deposition, promoted the growth of phytoplankton and elevated the isoprene concentration. This was confirmed by observed responses of isoprene to nutrients and aerosol dust additions in a ship-based incubation experiment, where the isoprene concentrations increased by 70% (t = 4.417, p < 0.001) and 35% (t = 2.387, p < 0.05), respectively. Biogenic isoprene production rates in the deck incubation experiments were positively related to chlorophyll a, temperature, and solar radiation, with an average production of 7.33 ± 4.27 pmol L−1 day−1. Photochemical degradation of dissolved organic matter was likely an abiotic source of isoprene, contributing to approximately 14% of the total production. Driven by high isoprene production and extreme physical disturbance, the KOE showed very high emissions of isoprene of 46.0 ± 13.0 nmol m−2 day−1, which led to a significant influence on the oxidative capacity of the local atmosphere.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.