Customizing biomimetic surface attributes of dendritic lipopeptide nanoplatforms for extended circulation

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2023-12-03 DOI:10.1016/j.nano.2023.102726
Jingjing Wei MSc , Yin Zhou MSc , Yiyan He PhD , Wentao Zhao MSc , Zhiqiang Luo PhD , Jian Yang PhD , Hongli Mao PhD , Zhongwei Gu MSc (Professor)
{"title":"Customizing biomimetic surface attributes of dendritic lipopeptide nanoplatforms for extended circulation","authors":"Jingjing Wei MSc ,&nbsp;Yin Zhou MSc ,&nbsp;Yiyan He PhD ,&nbsp;Wentao Zhao MSc ,&nbsp;Zhiqiang Luo PhD ,&nbsp;Jian Yang PhD ,&nbsp;Hongli Mao PhD ,&nbsp;Zhongwei Gu MSc (Professor)","doi":"10.1016/j.nano.2023.102726","DOIUrl":null,"url":null,"abstract":"<div><p>The pressing demand for innovative approaches to create delivery systems with heightened drug<span><span><span> loading and prolonged circulation has spurred numerous efforts, yielding some successes but accompanied by constraints. Our study proposes employing dendritic lipopeptide with precisely balanced opposing charges to extend blood residency for </span>biomimetic<span><span> nanoplatforms. Neutrally mixed-charged zwitterionic nanoparticles (NNPs) achieved a notable 19 % </span>simvastatin loading content and kept stable even after one-month storage at 4 °C. These nanoplatforms demonstrated low cytotoxicity in NIH-3T3 and L02 cells and negligible hemolysis (&lt;5 %). NNPs inhibited </span></span>protein adhesion<span> (&gt;95 %) from positively and negatively charged sources through surface hydration. In comparison to positively charged CNPs, NNPs demonstrated an 86 % decrease in phagocytic rate by BMDMs, highlighting their efficacy. Importantly, NNPs showed prolonged circulation compared to CNPs and free simvastatin. These findings highlight the potential of this biomimetic nanoplatform for future therapeutic applications with enhanced drug loading and circulation traits.</span></span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"56 ","pages":"Article 102726"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pressing demand for innovative approaches to create delivery systems with heightened drug loading and prolonged circulation has spurred numerous efforts, yielding some successes but accompanied by constraints. Our study proposes employing dendritic lipopeptide with precisely balanced opposing charges to extend blood residency for biomimetic nanoplatforms. Neutrally mixed-charged zwitterionic nanoparticles (NNPs) achieved a notable 19 % simvastatin loading content and kept stable even after one-month storage at 4 °C. These nanoplatforms demonstrated low cytotoxicity in NIH-3T3 and L02 cells and negligible hemolysis (<5 %). NNPs inhibited protein adhesion (>95 %) from positively and negatively charged sources through surface hydration. In comparison to positively charged CNPs, NNPs demonstrated an 86 % decrease in phagocytic rate by BMDMs, highlighting their efficacy. Importantly, NNPs showed prolonged circulation compared to CNPs and free simvastatin. These findings highlight the potential of this biomimetic nanoplatform for future therapeutic applications with enhanced drug loading and circulation traits.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制树枝状脂肽纳米平台的生物仿生表面属性,以延长流通时间。
人们迫切要求采用创新方法来创建具有更高的药物负荷和更长的循环时间的给药系统,这促使人们做出了许多努力,取得了一些成功,但也存在一些限制。我们的研究提出利用具有精确平衡的对立电荷的树枝状脂肽来延长仿生纳米平台在血液中的停留时间。中性混合电荷的齐聚物纳米颗粒(NNPs)的辛伐他汀载量达到了显著的 19%,并且在 4 °C 下储存一个月后仍保持稳定。这些纳米平台在 NIH-3T3 和 L02 细胞中的细胞毒性很低,通过表面水合作用,正负电荷源的溶血率(95%)可忽略不计。与带正电荷的 CNPs 相比,NNPs 使 BMDMs 的吞噬率降低了 86%,从而突显了其功效。重要的是,与 CNPs 和游离辛伐他汀相比,NNPs 的循环时间更长。这些发现凸显了这种生物仿生纳米平台在未来治疗应用中的潜力,它具有更强的药物负载和循环特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1