Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing.

IF 6.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Reviews in Endocrine & Metabolic Disorders Pub Date : 2024-04-01 Epub Date: 2023-12-06 DOI:10.1007/s11154-023-09860-y
Rexhina Vlashi, Xingen Zhang, Haibo Li, Guiqian Chen
{"title":"Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing.","authors":"Rexhina Vlashi, Xingen Zhang, Haibo Li, Guiqian Chen","doi":"10.1007/s11154-023-09860-y","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.</p>","PeriodicalId":21106,"journal":{"name":"Reviews in Endocrine & Metabolic Disorders","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Endocrine & Metabolic Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11154-023-09860-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 CRISPR/Cas9 介导的基因编辑治疗骨关节炎的潜在策略。
骨关节炎(OA)是一种致残性疾病,也是最常见的身体退化性疾病之一,其病因多种多样,分子机制极为复杂,至今仍缺乏有效的治疗方法。设计生物网络和精确修改现有基因组位点的能力为医学和生物技术科学的应用带来了巨大潜力。CRISPR/Cas9 机制是其中一种高度特异性的基因组编辑技术,被称为簇状规则间隔短回文重复序列,它是一种由 CRISPR 相关蛋白 9(Cas9)构成的防御机制,由小的非编码 RNA(sncRNA)引导,通过沃森-克里克碱基配对规则与目标 DNA 结合,随后启动对目标 DNA 的修复。最新的研究证实,CRISPR/Cas9 机制能有效针对 OA 的遗传和表观遗传学改变,抑制或删除基因表达,并最终在体外和体内骨关节炎模型中发挥独特的抗关节炎特性。据报道,这种高通量和多路复用的基因编辑方法是一种简便、微创的技术,而且对骨关节炎患者来说痛苦相对较小,因此它可以极大地促进 OA 相关治疗方法的临床开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Endocrine & Metabolic Disorders
Reviews in Endocrine & Metabolic Disorders 医学-内分泌学与代谢
CiteScore
14.70
自引率
1.20%
发文量
75
审稿时长
>12 weeks
期刊介绍: Reviews in Endocrine and Metabolic Disorders is an international journal dedicated to the field of endocrinology and metabolism. It aims to provide the latest advancements in this rapidly advancing field to students, clinicians, and researchers. Unlike other journals, each quarterly issue of this review journal focuses on a specific topic and features ten to twelve articles written by world leaders in the field. These articles provide brief overviews of the latest developments, offering insights into both the basic aspects of the disease and its clinical implications. This format allows individuals in all areas of the field, including students, academic clinicians, and practicing clinicians, to understand the disease process and apply their knowledge to their specific areas of interest. The journal also includes selected readings and other essential references to encourage further in-depth exploration of specific topics.
期刊最新文献
Traumatic brain injury and prolactin. Effectiveness and safety of continuous subcutaneous hydrocortisone infusion in managing adrenocortical insufficiency in adult patients: a systematic review. Could low prolactin levels after radiotherapy predict the onset of hypopituitarism? Effects of glucocorticoid replacement therapy in patients with pituitary disease: A new perspective for personalized replacement therapy. Primary hyperparathyroidism: from guidelines to outpatient clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1