Florence Place, Harry Carpenter, Barbara N Morrison, Neil Chester, Robert Cooper, Ben N Stansfield, Keith P George, David Oxborough
{"title":"The impact of image and performance enhancing drugs on atrial structure and function in resistance trained individuals.","authors":"Florence Place, Harry Carpenter, Barbara N Morrison, Neil Chester, Robert Cooper, Ben N Stansfield, Keith P George, David Oxborough","doi":"10.1186/s44156-023-00031-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear.</p><p><strong>Methods: </strong>Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity.</p><p><strong>Results: </strong>Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07).</p><p><strong>Conclusion: </strong>Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Echo Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44156-023-00031-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear.
Methods: Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity.
Results: Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07).
Conclusion: Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.
期刊介绍:
Echo Research and Practice aims to be the premier international journal for physicians, sonographers, nurses and other allied health professionals practising echocardiography and other cardiac imaging modalities. This open-access journal publishes quality clinical and basic research, reviews, videos, education materials and selected high-interest case reports and videos across all echocardiography modalities and disciplines, including paediatrics, anaesthetics, general practice, acute medicine and intensive care. Multi-modality studies primarily featuring the use of cardiac ultrasound in clinical practice, in association with Cardiac Computed Tomography, Cardiovascular Magnetic Resonance or Nuclear Cardiology are of interest. Topics include, but are not limited to: 2D echocardiography 3D echocardiography Comparative imaging techniques – CCT, CMR and Nuclear Cardiology Congenital heart disease, including foetal echocardiography Contrast echocardiography Critical care echocardiography Deformation imaging Doppler echocardiography Interventional echocardiography Intracardiac echocardiography Intraoperative echocardiography Prosthetic valves Stress echocardiography Technical innovations Transoesophageal echocardiography Valve disease.