Innovative solutions for disease management.

Dafni Carmina, Valentina Benfenati, Claudia Simonelli, Alessia Rotolo, Paola Cardano, Nicoletta Grovale, Lorenza Mangoni di S Stefano, Tiziana de Santo, Roberto Zamboni, Vincenzo Palermo, Michele Muccini, Francesco De Seta
{"title":"Innovative solutions for disease management.","authors":"Dafni Carmina, Valentina Benfenati, Claudia Simonelli, Alessia Rotolo, Paola Cardano, Nicoletta Grovale, Lorenza Mangoni di S Stefano, Tiziana de Santo, Roberto Zamboni, Vincenzo Palermo, Michele Muccini, Francesco De Seta","doi":"10.1186/s42234-023-00131-4","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of chronic diseases is a driver for emerging big data technologies for healthcare including digital platforms for data collection, systems for active patient engagement and education, therapy specific predictive models, optimized patient pathway models. Powerful bioelectronic medicine tools for data collection, analysis and visualization allow for joint processing of large volumes of heterogeneous data, which in turn can produce new insights about patient outcomes and alternative interpretations of clinical patterns that can lead to implementation of optimized clinical decisions and clinical patient pathway by healthcare professionals.With this perspective, we identify innovative solutions for disease management and evaluate their impact on patients, payers and society, by analyzing their impact in terms of clinical outcomes (effectiveness, safety, and quality of life) and economic outcomes (cost-effectiveness, savings, and productivity).As a result, we propose a new approach based on the main pillars of innovation in the disease management area, i.e. progressive patient care models, patient-centric approaches, bioelectronics for precise medicine, and lean management that, combined with an increase in appropriate private-public-citizen-partnership, leads towards Patient-Centric Healthcare.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"9 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-023-00131-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of chronic diseases is a driver for emerging big data technologies for healthcare including digital platforms for data collection, systems for active patient engagement and education, therapy specific predictive models, optimized patient pathway models. Powerful bioelectronic medicine tools for data collection, analysis and visualization allow for joint processing of large volumes of heterogeneous data, which in turn can produce new insights about patient outcomes and alternative interpretations of clinical patterns that can lead to implementation of optimized clinical decisions and clinical patient pathway by healthcare professionals.With this perspective, we identify innovative solutions for disease management and evaluate their impact on patients, payers and society, by analyzing their impact in terms of clinical outcomes (effectiveness, safety, and quality of life) and economic outcomes (cost-effectiveness, savings, and productivity).As a result, we propose a new approach based on the main pillars of innovation in the disease management area, i.e. progressive patient care models, patient-centric approaches, bioelectronics for precise medicine, and lean management that, combined with an increase in appropriate private-public-citizen-partnership, leads towards Patient-Centric Healthcare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疾病管理的创新解决方案。
慢性疾病的发病率不断上升,推动了新兴医疗保健大数据技术的发展,包括数据收集数字平台、患者主动参与和教育系统、特定疗法预测模型、优化患者路径模型。用于数据收集、分析和可视化的功能强大的生物电子医学工具可对大量异构数据进行联合处理,进而产生有关患者预后的新见解以及对临床模式的其他解释,从而促使医疗保健专业人员实施优化的临床决策和临床患者路径。从这一角度出发,我们确定了疾病管理的创新解决方案,并通过分析其对临床结果(有效性、安全性和生活质量)和经济结果(成本效益、节约和生产率)的影响,评估其对患者、支付方和社会的影响。因此,我们提出了一种基于疾病管理领域主要创新支柱的新方法,即渐进式患者护理模式、以患者为中心的方法、用于精确医疗的生物电子技术和精益管理,再加上适当增加私人-公共-公民伙伴关系,从而实现以患者为中心的医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement. Advice for translational neuroscience: move deliberately and build things. Advancing cancer therapy with custom-built alternating electric field devices. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1