Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Applied and Computational Harmonic Analysis Pub Date : 2023-12-05 DOI:10.1016/j.acha.2023.101621
Charles K. Chui , Wenjie He
{"title":"Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond","authors":"Charles K. Chui ,&nbsp;Wenjie He","doi":"10.1016/j.acha.2023.101621","DOIUrl":null,"url":null,"abstract":"<div><p>Empirical mode decomposition (EMD), introduced by N.E. Huang et al. in 1998, is perhaps the most popular data-driven computational scheme for the decomposition of a non-stationary signal or time series <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, with time-domain <span><math><mi>R</mi><mo>:</mo><mo>=</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, into finitely many oscillatory components <span><math><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></math></span>, called <em>intrinsic mode functions</em> (IMFs), and some “almost monotone” remainder <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, called the <em>trend</em> of <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. The core of EMD is the iterative “<em>sifting process</em>” applied to each function <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> to compute <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, where <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, with trend <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span>. For the computation of each IMF, the sifting process depends on cubic spline interpolation of the local maxima and local minima for computing the upper and lower envelopes, respectively, and on subtracting the mean of the two envelopes from the result of the previous iterative step. Since it is not feasible to search for all local extrema in the entire time-domain </span><span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span><span>, implementation of the sifting process is commonly performed on some desired truncated bounded interval </span><span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>. The main objective of this paper is to introduce and develop four “<em>cubic spline manipulation engines</em><span>”, called “quasi-interpolation (QI)”, “enhanced quasi-interpolation (EQI)”, “local interpolation (LI)”, and “improved global interpolation (IGI)” cubic spline manipulation engines, in order to significantly improve the performance of EMD on the truncated time-domains with minimal boundary artifacts, computational efficiency, accuracy, and consistency. Introduction and construction of the “fundamental quasi-interpolation” (FQI) splines as basis functions of the QI manipulation engine eliminates the need of matrix inversion<span> for computing (global) cubic spline interpolation, since the local maximum values and local minimum values are used as coefficients of their FQI spline series representations, respectively. For the EQI spline manipulation engine, the FQI functions are formulated in terms of the same cubic </span></span><em>B</em>-spline basis for both the upper and lower envelopes; and for the LI spline manipulation engine, the “cubic spline blending” operation is applied to further modify the FQI splines to enable true cubic spline interpolation by “correcting the approximate interpolation error” of the EQI engine. As a consequence, the EQI and LI manipulation engines have the common property that in computing the means of the upper and lower envelopes, the only computation is averaging the <em>B</em>-spline coefficients, instead of computing the upper and lower envelopes separately. Furthermore, fast cubic spline pre-processing of the given <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> is also introduced to assure numerical stability in the computation of the Hilbert transform of the first IMF </span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> on the truncated time-domain. The theory, along with methods and explicit formulas, developed in this paper are intended for other applications beyond EMD.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101621"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323001082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Empirical mode decomposition (EMD), introduced by N.E. Huang et al. in 1998, is perhaps the most popular data-driven computational scheme for the decomposition of a non-stationary signal or time series f(t), with time-domain R:=(,), into finitely many oscillatory components {f1(t),,fK(t)}, called intrinsic mode functions (IMFs), and some “almost monotone” remainder r(t), called the trend of f(t). The core of EMD is the iterative “sifting process” applied to each function mk1(t) to compute fk(t), for k=1,,K, where m0(t):=f(t) and mk(t):=mk1(t)fk(t), with trend r(t):=mK(t). For the computation of each IMF, the sifting process depends on cubic spline interpolation of the local maxima and local minima for computing the upper and lower envelopes, respectively, and on subtracting the mean of the two envelopes from the result of the previous iterative step. Since it is not feasible to search for all local extrema in the entire time-domain (,), implementation of the sifting process is commonly performed on some desired truncated bounded interval [a,b]. The main objective of this paper is to introduce and develop four “cubic spline manipulation engines”, called “quasi-interpolation (QI)”, “enhanced quasi-interpolation (EQI)”, “local interpolation (LI)”, and “improved global interpolation (IGI)” cubic spline manipulation engines, in order to significantly improve the performance of EMD on the truncated time-domains with minimal boundary artifacts, computational efficiency, accuracy, and consistency. Introduction and construction of the “fundamental quasi-interpolation” (FQI) splines as basis functions of the QI manipulation engine eliminates the need of matrix inversion for computing (global) cubic spline interpolation, since the local maximum values and local minimum values are used as coefficients of their FQI spline series representations, respectively. For the EQI spline manipulation engine, the FQI functions are formulated in terms of the same cubic B-spline basis for both the upper and lower envelopes; and for the LI spline manipulation engine, the “cubic spline blending” operation is applied to further modify the FQI splines to enable true cubic spline interpolation by “correcting the approximate interpolation error” of the EQI engine. As a consequence, the EQI and LI manipulation engines have the common property that in computing the means of the upper and lower envelopes, the only computation is averaging the B-spline coefficients, instead of computing the upper and lower envelopes separately. Furthermore, fast cubic spline pre-processing of the given f(t) is also introduced to assure numerical stability in the computation of the Hilbert transform of the first IMF f1(t) on the truncated time-domain. The theory, along with methods and explicit formulas, developed in this paper are intended for other applications beyond EMD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经验模态分解(EMD)在有界区间及以外的样条操作
经验模态分解(EMD),由N.E. Huang等人于1998年引入,可能是最流行的数据驱动计算方案,用于将非平稳信号或时间序列f(t)分解为有限多个振荡分量{f1(t),⋯,fK(t)},称为本然模态函数(IMFs),以及一些“几乎单调”的余数R (t),称为f(t)的趋势。EMD的核心是应用于每个函数mk−1(t)的迭代“筛选过程”来计算fk(t),对于k=1,⋯k,其中m0(t):=f(t)和mk(t):=mk−1(t)−fk(t),趋势r(t):= mk(t)。对于每个IMF的计算,筛选过程依赖于局部最大值和局部最小值的三次样条插值,分别计算上下包络,并从前一个迭代步骤的结果中减去两个包络的平均值。由于在整个时域(−∞,∞)内搜索所有局部极值是不可行的,因此通常在一些期望的截断有界区间上执行筛选过程[a,b]。本文的主要目标是引入和开发四种“三次样条操作引擎”,分别是“准插值(QI)”、“增强准插值(EQI)”、“局部插值(LI)”和“改进全局插值(IGI)”三次样条操作引擎,以显著提高EMD在截断时域上的性能,同时减少边界伪像,提高计算效率、精度和一致性。引入和构建“基本准插值”(FQI)样条作为QI操作引擎的基函数,消除了计算(全局)三次样条插值的矩阵反演的需要,因为局部最大值和局部最小值分别用作其FQI样条序列表示的系数。对于EQI样条操作引擎,FQI函数是根据上下两个信封相同的三次b样条基来表示的;对于LI样条操作引擎,通过“修正EQI引擎的近似插补误差”,应用“三次样条混合”操作进一步修改FQI样条,实现真正的三次样条插补。因此,EQI和LI操作引擎具有共同的性质,即在计算上下包络的平均值时,唯一的计算是平均b样条系数,而不是分别计算上下包络。此外,还引入了对给定f(t)的快速三次样条预处理,以确保在截断的时域上计算第一个IMF f1(t)的希尔伯特变换的数值稳定性。本文所提出的理论以及方法和显式公式将用于EMD以外的其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
期刊最新文献
On quadrature for singular integral operators with complex symmetric quadratic forms Gaussian approximation for the moving averaged modulus wavelet transform and its variants Naimark-spatial families of equichordal tight fusion frames Generalization error guaranteed auto-encoder-based nonlinear model reduction for operator learning Unlimited sampling beyond modulo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1