{"title":"On topological cyclic homology","authors":"Thomas Nikolaus, Peter Scholze","doi":"10.4310/acta.2018.v221.n2.a1","DOIUrl":null,"url":null,"abstract":"Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by Bokstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\\varphi_p: X\\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\\mathrm{cofib}(\\mathrm{Nm}: X_{hC_p}\\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\\varphi_p: X\\to X^{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":"5 22","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2018.v221.n2.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17
Abstract
Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by Bokstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\varphi_p: X\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\varphi_p: X\to X^{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.