Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Algorithms Pub Date : 2022-10-29 DOI:https://dl.acm.org/doi/10.1145/3570162
Kyle Fox, Debmalya Panigrahi, Fred Zhang
{"title":"Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions","authors":"Kyle Fox, Debmalya Panigrahi, Fred Zhang","doi":"https://dl.acm.org/doi/10.1145/3570162","DOIUrl":null,"url":null,"abstract":"<p>On hypergraphs with <i>m</i> hyperedges and <i>n</i> vertices, where <i>p</i> denotes the total size of the hyperedges, we provide the following results: <p><table border=\"0\" list-type=\"bullet\" width=\"95%\"><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>We give an algorithm that runs in \\(\\widetilde{O}\\left(mn^{2k-2}\\right) \\) time for finding a minimum <i>k</i>-cut in hypergraphs of arbitrary rank. This algorithm betters the previous best running time for the minimum <i>k</i>-cut problem, for <i>k</i> &gt; 2.</p></td></tr><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>We give an algorithm that runs in \\(\\widetilde{O}\\left(n^{\\max \\lbrace r,2k-2\\rbrace }\\right) \\) time for finding a minimum <i>k</i>-cut in hypergraphs of constant rank <i>r</i>. This algorithm betters the previous best running times for both the minimum cut and minimum <i>k</i>-cut problems for dense hypergraphs.</p></td></tr></table></p>\nBoth of our algorithms are Monte Carlo, <i>i.e.</i>, they return a minimum <i>k</i>-cut (or minimum cut) with high probability. These algorithms are obtained as instantiations of a generic <i>branching randomized contraction</i> technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum hedge-<i>k</i>-cut on hedgegraphs, which generalize hypergraphs.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

On hypergraphs with m hyperedges and n vertices, where p denotes the total size of the hyperedges, we provide the following results:

We give an algorithm that runs in \(\widetilde{O}\left(mn^{2k-2}\right) \) time for finding a minimum k-cut in hypergraphs of arbitrary rank. This algorithm betters the previous best running time for the minimum k-cut problem, for k > 2.

We give an algorithm that runs in \(\widetilde{O}\left(n^{\max \lbrace r,2k-2\rbrace }\right) \) time for finding a minimum k-cut in hypergraphs of constant rank r. This algorithm betters the previous best running times for both the minimum cut and minimum k-cut problems for dense hypergraphs.

Both of our algorithms are Monte Carlo, i.e., they return a minimum k-cut (or minimum cut) with high probability. These algorithms are obtained as instantiations of a generic branching randomized contraction technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum hedge-k-cut on hedgegraphs, which generalize hypergraphs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分支收缩超图中的最小割和最小k割
对于具有m个超边和n个顶点的超图,其中p表示超边的总大小,我们提供了以下结果:•我们给出了一个在\(\widetilde{O}\left(mn^{2k-2}\right) \)时间内运行的算法,用于在任意秩的超图中找到最小k-cut。该算法优于之前的最小k切问题的最佳运行时间,对于k &gt;2.•我们给出了一个运行时间为\(\widetilde{O}\left(n^{\max \lbrace r,2k-2\rbrace }\right) \)的算法,用于在常数秩r的超图中寻找最小k-切。该算法优于先前的最小k-切和最小k-切问题的最佳运行时间。我们的两个算法都是蒙特卡罗算法,也就是说,它们以高概率返回最小k-cut(或最小切割)。这些算法作为超图上一般分支随机收缩技术的实例,扩展了Karger和Stein关于图上递归收缩的著名工作。我们的技术和结果也推广到对冲图上的最小对冲切割和最小对冲k-切割问题,这是超图的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
期刊最新文献
Deterministic Replacement Path Covering On the complexity of symmetric vs. functional PCSPs Scattering and Sparse Partitions, and their Applications Quantum Speed-ups for String Synchronizing Sets, Longest Common Substring, and \(k\) -mismatch Matching On Computing the \(k\) -Shortcut Fréchet Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1