{"title":"Online Throughput Maximization on Unrelated Machines: Commitment is No Burden","authors":"Franziska Eberle, Nicole Megow, Kevin Schewior","doi":"https://dl.acm.org/doi/10.1145/3569582","DOIUrl":null,"url":null,"abstract":"<p>We consider a fundamental online scheduling problem in which jobs with processing times and deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive schedule on a single or multiple possibly unrelated machines that maximizes the number of jobs that complete before their deadline. Due to strong impossibility results for competitive analysis on a single machine, we require that jobs contain some <i>slack</i> ɛ > 0, which means that the feasible time window for scheduling a job is at least 1+ɛ times its processing time on each eligible machine. Our contribution is two-fold: (i) We give the first non-trivial online algorithms for throughput maximization on unrelated machines, and (ii), this is the main focus of our paper, we answer the question on how to handle commitment requirements which enforce that a scheduler has to guarantee at a certain point in time the completion of admitted jobs. This is very relevant, e.g., in providing cloud-computing services, and disallows last-minute rejections of critical tasks. We present an algorithm for unrelated machines that is \\(\\Theta (\\frac{1}{\\varepsilon })\\)-competitive when the scheduler must commit upon starting a job. Somewhat surprisingly, this is the same optimal performance bound (up to constants) as for scheduling without commitment on a single machine. If commitment decisions must be made before a job’s slack becomes less than a δ-fraction of its size, we prove a competitive ratio of \\(\\mathcal {O}(\\frac{1}{\\varepsilon - \\delta })\\) for 0 < δ < ɛ. This result nicely interpolates between commitment upon starting a job and commitment upon arrival. For the latter commitment model, it is known that no (randomized) online algorithm admits any bounded competitive ratio. While we mainly focus on scheduling without migration, our results also hold when comparing against a migratory optimal solution in case of identical machines.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"1 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3569582","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a fundamental online scheduling problem in which jobs with processing times and deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive schedule on a single or multiple possibly unrelated machines that maximizes the number of jobs that complete before their deadline. Due to strong impossibility results for competitive analysis on a single machine, we require that jobs contain some slack ɛ > 0, which means that the feasible time window for scheduling a job is at least 1+ɛ times its processing time on each eligible machine. Our contribution is two-fold: (i) We give the first non-trivial online algorithms for throughput maximization on unrelated machines, and (ii), this is the main focus of our paper, we answer the question on how to handle commitment requirements which enforce that a scheduler has to guarantee at a certain point in time the completion of admitted jobs. This is very relevant, e.g., in providing cloud-computing services, and disallows last-minute rejections of critical tasks. We present an algorithm for unrelated machines that is \(\Theta (\frac{1}{\varepsilon })\)-competitive when the scheduler must commit upon starting a job. Somewhat surprisingly, this is the same optimal performance bound (up to constants) as for scheduling without commitment on a single machine. If commitment decisions must be made before a job’s slack becomes less than a δ-fraction of its size, we prove a competitive ratio of \(\mathcal {O}(\frac{1}{\varepsilon - \delta })\) for 0 < δ < ɛ. This result nicely interpolates between commitment upon starting a job and commitment upon arrival. For the latter commitment model, it is known that no (randomized) online algorithm admits any bounded competitive ratio. While we mainly focus on scheduling without migration, our results also hold when comparing against a migratory optimal solution in case of identical machines.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing