Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-08-01 DOI:10.1016/j.nanoms.2023.10.003
{"title":"Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis","authors":"","doi":"10.1016/j.nanoms.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater. Herein, a heterogeneous-structured catalyst is constructed by depositing NiFe-layered double hydroxides (NiFe-LDH) on the substrate of MXene (V<sub>2</sub>CT<sub><em>x</em></sub>) modified Ni foam (NF), and abbreviated as NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF. As demonstrated, owing to the intrinsic negative charge characteristic of V<sub>2</sub>CT<sub><em>x</em></sub>, chlorine ions are denied entry to the interface between NiFe-LDH and V<sub>2</sub>CT<sub><em>x</em></sub>/NF substrate, thus endowing NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF catalyst with high corrosion resistance and durable stability for 110 ​h at 500 ​mA ​cm<sup>−2</sup>. Meanwhile, the two-dimensional structure and high electrical conductivity of V<sub>2</sub>CT<sub><em>x</em></sub> can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer, thereby synergistically promoting the catalytic performance of NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF in both deionized water electrolyte (261 ​mV at 100 ​mA ​cm<sup>−2</sup>) and simulated seawater electrolyte (241 ​mV at 100 ​mA ​cm<sup>−2</sup>). This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000648/pdfft?md5=82a33fb2c64bd2d8c0a655435ec3d8f4&pid=1-s2.0-S2589965123000648-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000648","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater. Herein, a heterogeneous-structured catalyst is constructed by depositing NiFe-layered double hydroxides (NiFe-LDH) on the substrate of MXene (V2CTx) modified Ni foam (NF), and abbreviated as NiFe-LDH/V2CTx/NF. As demonstrated, owing to the intrinsic negative charge characteristic of V2CTx, chlorine ions are denied entry to the interface between NiFe-LDH and V2CTx/NF substrate, thus endowing NiFe-LDH/V2CTx/NF catalyst with high corrosion resistance and durable stability for 110 ​h at 500 ​mA ​cm−2. Meanwhile, the two-dimensional structure and high electrical conductivity of V2CTx can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer, thereby synergistically promoting the catalytic performance of NiFe-LDH/V2CTx/NF in both deionized water electrolyte (261 ​mV at 100 ​mA ​cm−2) and simulated seawater electrolyte (241 ​mV at 100 ​mA ​cm−2). This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有本征抑氯性能的海水电解高活性持久析氧催化剂的设计
由于析氧催化剂的组成复杂、副反应激烈,其活性低、耐久性差,阻碍了海水电解的高效进行。本文通过在MXene (V2CTx)改性Ni泡沫(NF)基体上沉积nife层状双氢氧化物(NiFe-LDH)构建了一种异质结构催化剂,简称为NiFe-LDH/V2CTx/NF。结果表明,由于V2CTx的固有负电荷特性,氯离子被拒绝进入nfe - ldh和V2CTx/NF底物之间的界面,从而赋予nfe - ldh /V2CTx/NF催化剂高耐腐蚀性和在500 mA cm - 2下110 h的持久稳定性。同时,V2CTx的二维结构和高导电性可以分别扩大电化学活性表面积和保证快速电荷转移,从而协同促进NiFe-LDH/V2CTx/NF在去离子水电解质(261 mV, 100 mA cm−2)和模拟海水电解质(241 mV, 100 mA cm−2)中的催化性能。本工作对析氧催化剂的制备具有指导意义,可促进海水电解的工业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1