Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Journal of the Korean Statistical Society Pub Date : 2023-12-03 DOI:10.1007/s42952-023-00241-4
Meisam Moghimbeygi, Mousa Golalizadeh
{"title":"Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation","authors":"Meisam Moghimbeygi, Mousa Golalizadeh","doi":"10.1007/s42952-023-00241-4","DOIUrl":null,"url":null,"abstract":"<p>Shape, as an intrinsic concept, can be considered as a source of information in some statistical analysis contexts. For instance, one of the important topics in morphology is to study the shape changes along time. From a topological viewpoint, shape data are points on a particular manifold and so to construct a longitudinal model for treating shape variation is not as trivial as thought. Unlike using the common parametric models to do such a task, we invoke Procrustes analysis in the context of a nonparametric framework and propose a simple, yet useful, model to deal with shape changes. After conveying the problem into the nonparametric regression model, we utilize the weighted least squares method to estimates the related parameters. Also, we illustrate implementing this new model in simulation studies and analyzing two biological data sets. Our proposed model shows its superiority while compared with other counterpart models.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"25 6","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00241-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Shape, as an intrinsic concept, can be considered as a source of information in some statistical analysis contexts. For instance, one of the important topics in morphology is to study the shape changes along time. From a topological viewpoint, shape data are points on a particular manifold and so to construct a longitudinal model for treating shape variation is not as trivial as thought. Unlike using the common parametric models to do such a task, we invoke Procrustes analysis in the context of a nonparametric framework and propose a simple, yet useful, model to deal with shape changes. After conveying the problem into the nonparametric regression model, we utilize the weighted least squares method to estimates the related parameters. Also, we illustrate implementing this new model in simulation studies and analyzing two biological data sets. Our proposed model shows its superiority while compared with other counterpart models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非参数纵向回归模型分析形状数据的Procrustes旋转
形状作为一个内在概念,在某些统计分析环境中可以被视为信息来源。例如,形态学的一个重要课题是研究形状随时间的变化。从拓扑学的角度来看,形状数据是一个特定流形上的点,因此建立一个纵向模型来处理形状变化并不像想象的那么简单。与使用普通参数模型来完成这样的任务不同,我们在非参数框架的背景下调用Procrustes分析,并提出一个简单但有用的模型来处理形状变化。将问题转化为非参数回归模型后,利用加权最小二乘法对相关参数进行估计。此外,我们说明了在模拟研究和分析两个生物数据集中实现这个新模型。与其他模型相比,我们所提出的模型显示出其优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
期刊最新文献
Asymmetric kernel density estimation for biased data Community detection for networks based on Monte Carlo type algorithms Integrated volatility estimation: the case of observed noise variables Using statistical models for optimal packaging in semiconductor manufacturing processes Generalized parametric help in Hilbertian additive regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1