Improved Synthesis of Chiral 1,4,7-Triazacyclononane Derivatives and Their Application in Ni-Catalyzed Csp3−Csp3 Kumada Cross-Coupling

IF 1.5 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Helvetica Chimica Acta Pub Date : 2023-11-15 DOI:10.1002/hlca.202300170
Chi-Herng Hu, Ju Byeong Chae, Liviu M. Mirica
{"title":"Improved Synthesis of Chiral 1,4,7-Triazacyclononane Derivatives and Their Application in Ni-Catalyzed Csp3−Csp3 Kumada Cross-Coupling","authors":"Chi-Herng Hu,&nbsp;Ju Byeong Chae,&nbsp;Liviu M. Mirica","doi":"10.1002/hlca.202300170","DOIUrl":null,"url":null,"abstract":"<p>Herein, we report four new chiral 1,4,7-triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N-substituent and two alkyl (methyl or <i>tert</i>-butyl) N-substituents, and we have developed a new synthetic method for the dimethyl-substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N-alkyl substituents, from a dinuclear tris(μ-chloro)dinickel complex to mononuclear Ni-dichloride and Ni-chloride complexes. These complexes were then employed in the alkyl-alkyl Kumada cross-coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross-coupled product, while the mononuclear Ni-dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross-coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl-alkyl Kumada cross-coupling reaction among the four complexes investigated, as well as the highest enantioselectivity.</p>","PeriodicalId":12842,"journal":{"name":"Helvetica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202300170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helvetica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202300170","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report four new chiral 1,4,7-triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N-substituent and two alkyl (methyl or tert-butyl) N-substituents, and we have developed a new synthetic method for the dimethyl-substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N-alkyl substituents, from a dinuclear tris(μ-chloro)dinickel complex to mononuclear Ni-dichloride and Ni-chloride complexes. These complexes were then employed in the alkyl-alkyl Kumada cross-coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross-coupled product, while the mononuclear Ni-dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross-coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl-alkyl Kumada cross-coupling reaction among the four complexes investigated, as well as the highest enantioselectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手性1,4,7-三氮杂环壬烷衍生物的改进合成及其在ni催化Csp3-Csp3 Kumada交叉偶联中的应用
本文报道了四种新的手性1,4,7-三氮杂环壬烷(TACN)衍生物及其相应的氯化镍配合物。所有的TACN配体都带有1个手性n取代基和2个烷基(甲基或叔丁基)n取代基,为了防止旋转异构体阻碍环化反应,我们开发了一种新的二甲基取代TACN衍生物的合成方法。根据n -烷基取代基的空间体积,镍配合物的配位几何结构发生了显著的变化,从双核三(微氯)二镍配合物到单核二氯化镍和氯化镍配合物。然后将这些配合物应用于烷基-烷基Kumada交叉偶联反应,结果表明,空间位阻越强的配体产生的均偶联产物比交叉偶联产物多,而单核二氯化镍配合物的催化活性明显较慢。这些手性配合物也被用于对映收敛交叉偶联反应中,以提供显著的对映体富集。总体而言,在四种配合物中,空间阻碍最小的Ni配合物在烷基-烷基Kumada交叉偶联反应中产率最高,对映选择性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Helvetica Chimica Acta
Helvetica Chimica Acta 化学-化学综合
CiteScore
3.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Helvetica Chimica Acta, founded by the Swiss Chemical Society in 1917, is a monthly multidisciplinary journal dedicated to the dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences, where molecular aspects are key to the findings. Helvetica Chimica Acta is committed to the publication of original, high quality papers at the frontier of scientific research. All contributions will be peer reviewed with the highest possible standards and published within 3 months of receipt, with no restriction on the length of the papers and in full color.
期刊最新文献
Cover Picture: (Helv. Chim. Acta 9/2024) Cover Picture: (Helv. Chim. Acta 8/2024) Micelle Enabled Buchwald-Hartwig Amination in Water with the Bening by Design Surfactant TPGS-750-M for the Synthesis of the JAK Inhibitor 4-((2-Chlorophenyl)amino)-6-((6-methylpyridin-2-yl)amino)nicotinamide A Telescopic, Scalable and Industrially Feasible Method for the Synthesis of Antidepressant Drug, Moclobemide Cover Picture: (Helv. Chim. Acta 7/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1