Direct-Laser-Written Polymer Nanowire Waveguides for Broadband Single Photon Collection from Epitaxial Quantum Dots into a Gaussian-like Mode

Edgar F. Perez, Cori Haws, Marcelo Davanco, Jindong Song, Luca Sapienza, Kartik Srinivasan
{"title":"Direct-Laser-Written Polymer Nanowire Waveguides for Broadband Single Photon Collection from Epitaxial Quantum Dots into a Gaussian-like Mode","authors":"Edgar F. Perez, Cori Haws, Marcelo Davanco, Jindong Song, Luca Sapienza, Kartik Srinivasan","doi":"10.1002/qute.202300149","DOIUrl":null,"url":null,"abstract":"Single epitaxial quantum dots (QDs) embedded in nanophotonic geometries are a leading technology for quantum light generation. However, efficiently coupling their emission into a single mode fiber or Gaussian beam often remains challenging. Here, direct laser writing (DLW) is used to address this challenge by fabricating 1 µm diameter polymer nanowires (PNWs) in-contact-with and perpendicular-to a QD-containing GaAs layer. QD emission is coupled to the PNW's <math altimg=\"urn:x-wiley:25119044:media:qute202300149:qute202300149-math-0001\" display=\"inline\" location=\"graphic/qute202300149-math-0001.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<msub>\n<mi>E</mi>\n<mn>11</mn>\n</msub>\n</mrow>\n$HE_{11}$</annotation>\n</semantics></math> waveguide mode, enhancing collection efficiency into a single-mode fiber. PNW fabrication does not alter the QD device layer, making PNWs well-suited for augmenting pre-existing in-plane geometries. Standalone PNWs and PNWs in conjunction with metallic nanoring devices that have been previously established for increasing extraction of QD emission are studied. Methods that mitigate standing wave reflections and heat, caused by GaAs's absorption/reflection of the lithography beam, and which otherwise prevent PNW fabrication, are also reported. A maximum improvement of (<math altimg=\"urn:x-wiley:25119044:media:qute202300149:qute202300149-math-0002\" display=\"inline\" location=\"graphic/qute202300149-math-0002.png\">\n<semantics>\n<mrow>\n<mn>3.0</mn>\n<mspace width=\"3.33333pt\"></mspace>\n<mo>±</mo>\n<mspace width=\"3.33333pt\"></mspace>\n<mn>0.7</mn>\n<mo stretchy=\"false\">)</mo>\n<mo>×</mo>\n</mrow>\n$3.0\\nobreakspace \\pm \\nobreakspace 0.7)\\times$</annotation>\n</semantics></math> in a nanoring system with a PNW compared to the same system without a PNW is observed, in line with numerical results, and highlighting the PNW's ability to waveguide QD emission and increase collection efficiency simultaneously. These results demonstrate new DLW functionality in service of quantum emitter photonics that maintains compatibility with existing top-down fabrication approaches.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single epitaxial quantum dots (QDs) embedded in nanophotonic geometries are a leading technology for quantum light generation. However, efficiently coupling their emission into a single mode fiber or Gaussian beam often remains challenging. Here, direct laser writing (DLW) is used to address this challenge by fabricating 1 µm diameter polymer nanowires (PNWs) in-contact-with and perpendicular-to a QD-containing GaAs layer. QD emission is coupled to the PNW's H E 11 $HE_{11}$ waveguide mode, enhancing collection efficiency into a single-mode fiber. PNW fabrication does not alter the QD device layer, making PNWs well-suited for augmenting pre-existing in-plane geometries. Standalone PNWs and PNWs in conjunction with metallic nanoring devices that have been previously established for increasing extraction of QD emission are studied. Methods that mitigate standing wave reflections and heat, caused by GaAs's absorption/reflection of the lithography beam, and which otherwise prevent PNW fabrication, are also reported. A maximum improvement of ( 3.0 ± 0.7 ) × $3.0\nobreakspace \pm \nobreakspace 0.7)\times$ in a nanoring system with a PNW compared to the same system without a PNW is observed, in line with numerical results, and highlighting the PNW's ability to waveguide QD emission and increase collection efficiency simultaneously. These results demonstrate new DLW functionality in service of quantum emitter photonics that maintains compatibility with existing top-down fabrication approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于外延量子点类高斯模式宽带单光子采集的直接激光写入聚合物纳米线波导
嵌入纳米光子几何结构的单外延量子点(QDs)是量子光产生的领先技术。然而,有效地将它们的发射耦合到单模光纤或高斯光束中仍然是一个挑战。在这里,直接激光写入(DLW)通过制造1 μ m直径的聚合物纳米线(PNWs)来解决这一挑战,这些纳米线与含有量子点的砷化镓层接触并垂直。QD发射与PNW的HE11$HE_{11}$波导模式耦合,提高了单模光纤的收集效率。PNW的制造不会改变QD器件层,使得PNW非常适合于增加已有的平面内几何形状。本文研究了独立的PNWs和与金属纳米环装置结合的PNWs,这些装置已被建立用于增加量子点发射的提取。此外,还报道了减轻由GaAs吸收/反射光刻光束引起的驻波反射和热量的方法,否则会阻碍PNW的制造。与不使用PNW的纳米系统相比,使用PNW的纳米系统的最大改进为(3.0±0.7)×$3.0\nobreakspace \pm \nobreakspace 0.7)\times$,与数值结果一致,突出了PNW波导波导量子点发射和同时提高收集效率的能力。这些结果证明了新的DLW功能在量子发射器光子学服务中保持了与现有的自顶向下制造方法的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Sensitivity of Quantum Fiber‐Optical Gyroscope via a Non‐Gaussian‐State Probe Implementation of Entanglement Witnesses with Quantum Circuits Quantum Effect Enables Large Elastocaloric Effect in Monolayer MoSi2N4${\rm MoSi}_2{\rm N}_4$ and Graphene Dynamic Phase Enabled Topological Mode Steering in Composite Su‐Schrieffer–Heeger Waveguide Arrays Variational Quantum Algorithm‐Preserving Feasible Space for Solving the Uncapacitated Facility Location Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1