{"title":"Toward a Laser-Free Diamond Magnetometer for Microwave Fields","authors":"Pengju Zhao, Haodong Wang, Fei Kong, Zhecheng Wang, Yuhang Guo, Huiyao Yu, Fazhan Shi, Jiangfeng Du","doi":"10.1002/qute.202300191","DOIUrl":null,"url":null,"abstract":"The nitrogen-vacancy (NV) center in diamond is a unique magnetometer. Its atomic size enables integrations of a tremendous amount (<i>n</i><sub>NV</sub>) of NV centers in a bulk diamond with a sensitivity scaling as <math altimg=\"urn:x-wiley:25119044:media:qute202300191:qute202300191-math-0001\" display=\"inline\" location=\"graphic/qute202300191-math-0001.png\">\n<semantics>\n<mrow>\n<mn>1</mn>\n<mo>/</mo>\n<msqrt>\n<msub>\n<mi>n</mi>\n<mi>NV</mi>\n</msub>\n</msqrt>\n</mrow>\n$1/\\sqrt {n_{\\rm NV}}$</annotation>\n</semantics></math>. However, such a bulk sensor requires a high-power laser to polarize and read out the NV centers. The increasing thermal damage and additional noises associated with high-power lasers hinder the growth of <i>n</i><sub>NV</sub>, and thus limit the sensitivity at picotesla level. Here, it shows a relaxometry-based microwave magnetometer that the power density is determined by the relaxation time <i>T</i><sub>1</sub>. By cooling the diamond sensor to prolong the <i>T</i><sub>1</sub> (≈s), the required power density further reduces to <math altimg=\"urn:x-wiley:25119044:media:qute202300191:qute202300191-math-0002\" display=\"inline\" location=\"graphic/qute202300191-math-0002.png\">\n<semantics>\n<mrow>\n<mn>0.077</mn>\n<mspace width=\"3.33333pt\"></mspace>\n<msup>\n<mi>Wcm</mi>\n<mrow>\n<mo>−</mo>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n$0.077\\nobreakspace {\\rm Wcm^{-2}}$</annotation>\n</semantics></math>, <math altimg=\"urn:x-wiley:25119044:media:qute202300191:qute202300191-math-0003\" display=\"inline\" location=\"graphic/qute202300191-math-0003.png\">\n<semantics>\n<mrow>\n<mo>≈</mo>\n<mspace width=\"0.33em\"></mspace>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo>−</mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n$\\approx \\ 10^{-6}$</annotation>\n</semantics></math> of the saturation value. This work paves the way for the utilization of large-size diamond to promote the sensitivity of diamond magnetometer to femtotesla level and beyond.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen-vacancy (NV) center in diamond is a unique magnetometer. Its atomic size enables integrations of a tremendous amount (nNV) of NV centers in a bulk diamond with a sensitivity scaling as . However, such a bulk sensor requires a high-power laser to polarize and read out the NV centers. The increasing thermal damage and additional noises associated with high-power lasers hinder the growth of nNV, and thus limit the sensitivity at picotesla level. Here, it shows a relaxometry-based microwave magnetometer that the power density is determined by the relaxation time T1. By cooling the diamond sensor to prolong the T1 (≈s), the required power density further reduces to , of the saturation value. This work paves the way for the utilization of large-size diamond to promote the sensitivity of diamond magnetometer to femtotesla level and beyond.