A Minimum Residual Based Gradient Iterative Method for a Class of Matrix Equations

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Acta Mathematicae Applicatae Sinica, English Series Pub Date : 2023-11-30 DOI:10.1007/s10255-024-1100-0
Qing-qing Zheng
{"title":"A Minimum Residual Based Gradient Iterative Method for a Class of Matrix Equations","authors":"Qing-qing Zheng","doi":"10.1007/s10255-024-1100-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a minimum residual based gradient iterative method for solving a class of matrix equations including Sylvester matrix equations and general coupled matrix equations. The iterative method uses a negative gradient as steepest direction and seeks for an optimal step size to minimize the residual norm of next iterate. It is shown that the iterative sequence converges unconditionally to the exact solution for any initial guess and that the norm of the residual matrix and error matrix decrease monotonically. Numerical tests are presented to show the efficiency of the proposed method and confirm the theoretical results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"17 - 34"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1100-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a minimum residual based gradient iterative method for solving a class of matrix equations including Sylvester matrix equations and general coupled matrix equations. The iterative method uses a negative gradient as steepest direction and seeks for an optimal step size to minimize the residual norm of next iterate. It is shown that the iterative sequence converges unconditionally to the exact solution for any initial guess and that the norm of the residual matrix and error matrix decrease monotonically. Numerical tests are presented to show the efficiency of the proposed method and confirm the theoretical results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类矩阵方程的最小残差梯度迭代法
本文提出了一种基于最小残差的梯度迭代法,用于求解一类矩阵方程,包括Sylvester矩阵方程和一般耦合矩阵方程。迭代法以负梯度为最陡方向,寻求最优步长,使下一次迭代的残差范数最小。证明了迭代序列无条件收敛于任意初始猜想的精确解,残差矩阵和误差矩阵的范数单调减小。通过数值试验验证了该方法的有效性和理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
期刊最新文献
Least Square Estimation for Multiple Functional Linear Model with Autoregressive Errors Solution of a Time-Space Tempered Fractional Diffusion-Wave Equation and its Theoretical Aspects Some Eigenvalue Properties of Third-order Boundary Value Problems with Distributional Potentials Bifurcations and Spatiotemporal Patterns in the Diffusive Nutrient-Microorganism Model A Dive Into the Asymptotic Analysis Theory: a Short Review from Fluids to Financial Markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1