{"title":"Hydroxychloroquine exacerbates imiquimod-induced psoriasis-like dermatitis through stimulating overexpression of IL-6 in keratinocytes.","authors":"Ling-Jung Yen, Ying-Chin Chen, Kai-Chun Wang, Meng-Chieh Shih, Chia-Ling Li, Sheng-Jie Yu, Ling-Ying Lu","doi":"10.1080/08923973.2023.2281283","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Hydroxychloroquine (HCQ) is a US Food and Drug Administration (FDA)-approved treatment for systemic lupus erythematosus (SLE) through inhibition of antigen presentation and subsequent reduction in T cell activation. Psoriasis relapse after antimalarial therapy have been reported in up to 18% of patients with psoriasis. Here, we explored the role of HCQ on exacerbating dermatitis utilizing an imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model.</p><p><strong>Methods: </strong>Thirty-six C57BL/6 female mice were divided into six groups: wild-type control, IMQ-Only, pre-treat HCQ (30 mg/kg and 60 mg/kg HCQ), and co-treat HCQ with IMQ (30 mg/kg and 60 mg/kg HCQ). Besides control, all were topically treated with IMQ for 5 days. Pharmacological effects and mechanisms of HCQ were assessed by clinical severity of dermatitis, histopathology, and flow cytometry. HaCaT cells were co-treated with both HCQ and recombinant IL-17A, followed by the detection of proinflammatory cytokine expression and gene profiles through enzyme-linked immunosorbent assay and next-generation sequencing.</p><p><strong>Results: </strong>In the pre-treated and co-treated HCQ groups, skin redness and scaling were significantly increased compared to the IMQ-Only group, and Th17 cell expression was also upregulated. Acanthosis and CD11b<sup>+</sup>IL23<sup>+</sup> dendritic cell (DC) infiltration were observed in the HCQ treatment group. IL-6 overexpression was detected in both the HaCaT cells and skin from the experimental mice. Psoriasis-related genes were regulated after being co-treated with HCQ and recombinant IL-17A in HaCaT cells.</p><p><strong>Conclusions: </strong>HCQ exacerbates psoriasis-like skin inflammation by increasing the expression of IL-6, stimulating DC infiltration, and promoting Th17 expression in the microenvironment of the skin.</p><p><strong>Key messages: </strong>This study provided possible mechanisms for inducing psoriasis during HCQ treatment through an animal model.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2281283","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Hydroxychloroquine (HCQ) is a US Food and Drug Administration (FDA)-approved treatment for systemic lupus erythematosus (SLE) through inhibition of antigen presentation and subsequent reduction in T cell activation. Psoriasis relapse after antimalarial therapy have been reported in up to 18% of patients with psoriasis. Here, we explored the role of HCQ on exacerbating dermatitis utilizing an imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model.
Methods: Thirty-six C57BL/6 female mice were divided into six groups: wild-type control, IMQ-Only, pre-treat HCQ (30 mg/kg and 60 mg/kg HCQ), and co-treat HCQ with IMQ (30 mg/kg and 60 mg/kg HCQ). Besides control, all were topically treated with IMQ for 5 days. Pharmacological effects and mechanisms of HCQ were assessed by clinical severity of dermatitis, histopathology, and flow cytometry. HaCaT cells were co-treated with both HCQ and recombinant IL-17A, followed by the detection of proinflammatory cytokine expression and gene profiles through enzyme-linked immunosorbent assay and next-generation sequencing.
Results: In the pre-treated and co-treated HCQ groups, skin redness and scaling were significantly increased compared to the IMQ-Only group, and Th17 cell expression was also upregulated. Acanthosis and CD11b+IL23+ dendritic cell (DC) infiltration were observed in the HCQ treatment group. IL-6 overexpression was detected in both the HaCaT cells and skin from the experimental mice. Psoriasis-related genes were regulated after being co-treated with HCQ and recombinant IL-17A in HaCaT cells.
Conclusions: HCQ exacerbates psoriasis-like skin inflammation by increasing the expression of IL-6, stimulating DC infiltration, and promoting Th17 expression in the microenvironment of the skin.
Key messages: This study provided possible mechanisms for inducing psoriasis during HCQ treatment through an animal model.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).