Predicting the climate impact of healthcare facilities using gradient boosting machines

IF 6.1 Q2 ENGINEERING, ENVIRONMENTAL Cleaner Environmental Systems Pub Date : 2023-11-26 DOI:10.1016/j.cesys.2023.100155
Hao Yin , Bhavna Sharma , Howard Hu , Fei Liu , Mehak Kaur , Gary Cohen , Rob McConnell , Sandrah P. Eckel
{"title":"Predicting the climate impact of healthcare facilities using gradient boosting machines","authors":"Hao Yin ,&nbsp;Bhavna Sharma ,&nbsp;Howard Hu ,&nbsp;Fei Liu ,&nbsp;Mehak Kaur ,&nbsp;Gary Cohen ,&nbsp;Rob McConnell ,&nbsp;Sandrah P. Eckel","doi":"10.1016/j.cesys.2023.100155","DOIUrl":null,"url":null,"abstract":"<div><p>Health care accounts for 9–10% of greenhouse gas (GHG) emissions in the United States. Strategies for monitoring these emissions at the hospital level are needed to decarbonize the sector. However, data collection to estimate emissions is challenging. We explored the potential of gradient boosting machines (GBM) to impute missing data on resource consumption in the 2020 survey of a consortium of 283 hospitals participating in Practice Greenhealth. GBM imputed missing values for selected variables in order to predict electricity use (R<sup>2</sup> = 0.82) and beef consumption (R<sup>2</sup> = 0.82) and anesthetic gas desflurane use (R<sup>2</sup> = 0.51), using administrative and financial data readily available for most hospitals. After imputing missing consumption data, estimated GHG emissions associated with these three examples totaled over 3 million metric tons of CO<sub>2</sub> equivalent emissions (MTCO<sub>2</sub>e). Specifically, electricity consumption had the largest total carbon footprint (2.4 MTCO<sub>2</sub>e), followed by beef (0.6 million MTCO<sub>2</sub>e) and desflurane consumption (0.03 million MTCO<sub>2</sub>e) across the 283 hospitals. The approach should be applicable to other sources of hospital GHGs in order to estimate total emissions of individual hospitals and to refine survey questions to help develop better intervention strategies.</p></div>","PeriodicalId":34616,"journal":{"name":"Cleaner Environmental Systems","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666789423000491/pdfft?md5=2a1185786f08484c1c287baead827ba2&pid=1-s2.0-S2666789423000491-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666789423000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Health care accounts for 9–10% of greenhouse gas (GHG) emissions in the United States. Strategies for monitoring these emissions at the hospital level are needed to decarbonize the sector. However, data collection to estimate emissions is challenging. We explored the potential of gradient boosting machines (GBM) to impute missing data on resource consumption in the 2020 survey of a consortium of 283 hospitals participating in Practice Greenhealth. GBM imputed missing values for selected variables in order to predict electricity use (R2 = 0.82) and beef consumption (R2 = 0.82) and anesthetic gas desflurane use (R2 = 0.51), using administrative and financial data readily available for most hospitals. After imputing missing consumption data, estimated GHG emissions associated with these three examples totaled over 3 million metric tons of CO2 equivalent emissions (MTCO2e). Specifically, electricity consumption had the largest total carbon footprint (2.4 MTCO2e), followed by beef (0.6 million MTCO2e) and desflurane consumption (0.03 million MTCO2e) across the 283 hospitals. The approach should be applicable to other sources of hospital GHGs in order to estimate total emissions of individual hospitals and to refine survey questions to help develop better intervention strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用梯度增强机预测医疗设施的气候影响
医疗保健占美国温室气体(GHG)排放量的9-10%。需要在医院一级监测这些排放的战略,以使该部门脱碳。然而,收集数据以估计排放量是具有挑战性的。我们探索了梯度增强机(GBM)在2020年参与实践绿色健康的283家医院联盟调查中计算资源消耗缺失数据的潜力。GBM利用大多数医院现成的行政和财务数据,对选定变量进行了缺失值估算,以预测用电量(R2 = 0.82)、牛肉消费量(R2 = 0.82)和麻醉气体地氟醚使用量(R2 = 0.51)。在输入缺失的消费数据后,与这三个例子相关的温室气体排放估计总计超过300万公吨二氧化碳当量排放(MTCO2e)。具体而言,在283家医院中,电力消耗的总碳足迹最大(240万吨二氧化碳当量),其次是牛肉(60万吨二氧化碳当量)和地氟醚消耗(3万吨二氧化碳当量)。该方法应适用于医院温室气体的其他来源,以便估计个别医院的总排放量,并改进调查问题,以帮助制定更好的干预战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cleaner Environmental Systems
Cleaner Environmental Systems Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
0.00%
发文量
32
审稿时长
52 days
期刊最新文献
A novel integrated material flow cost accounting (MFCA)- IoT-lean management system approach to improving water use efficiency and reducing costs in the beverage industry Eco-efficiency of coffee production and consumption in the UK at the product and sectoral levels Climate policy uncertainty and environmental degradation: Does democracy moderate this relationship? Integrated approach of waste analysis and life cycle assessment for the management of non-recyclable plastics in recycling shops Implementation and improvement of Integrated Management Systems: recommendations for their adaptation to the ISO High-Level structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1