Strength and Relaxation and Corrosion Resistance of Ultrafine-Grained Austenitic 08Kh18N10T Steel Produced by ECAP: I. Microstructure and Strength

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Metallurgy (Metally) Pub Date : 2023-12-05 DOI:10.1134/S0036029523070066
V. I. Kopylov, V. N. Chuvil’deev, A. V. Nokhrin, M. Yu. Gryaznov, S. V. Shotin, K. E. Smetanina, N. Yu. Tabachkova
{"title":"Strength and Relaxation and Corrosion Resistance of Ultrafine-Grained Austenitic 08Kh18N10T Steel Produced by ECAP: I. Microstructure and Strength","authors":"V. I. Kopylov,&nbsp;V. N. Chuvil’deev,&nbsp;A. V. Nokhrin,&nbsp;M. Yu. Gryaznov,&nbsp;S. V. Shotin,&nbsp;K. E. Smetanina,&nbsp;N. Yu. Tabachkova","doi":"10.1134/S0036029523070066","DOIUrl":null,"url":null,"abstract":"<p>The microstructure and mechanical properties (at room and elevated temperatures) of ultrafine-grained (UFG) 08Kh18N10T steel fabricated by equal-channel angular pressing (ECAP) at temperatures of 150 and 450°C are studied. The UFG steel is found to have a high α' martensite content, and σ-phase nanoparticles precipitate in it upon heating. The UFG steel is shown to have a high ultimate tensile strength and good ductility. The Hall–Petch coefficient of the UFG steel is found to decrease due to the fragmentation of δ-ferrite particles during ECAP.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523070066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure and mechanical properties (at room and elevated temperatures) of ultrafine-grained (UFG) 08Kh18N10T steel fabricated by equal-channel angular pressing (ECAP) at temperatures of 150 and 450°C are studied. The UFG steel is found to have a high α' martensite content, and σ-phase nanoparticles precipitate in it upon heating. The UFG steel is shown to have a high ultimate tensile strength and good ductility. The Hall–Petch coefficient of the UFG steel is found to decrease due to the fragmentation of δ-ferrite particles during ECAP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECAP法制备超细晶奥氏体08Kh18N10T钢的强度、弛豫性和耐蚀性:1 .组织与强度
研究了超细晶(UFG) 08Kh18N10T钢在150℃和450℃等径角挤压(ECAP)工艺下的显微组织和室温和高温力学性能。UFG钢具有较高的α′马氏体含量,加热后有σ相纳米颗粒析出。UFG钢具有较高的极限抗拉强度和良好的延展性。由于δ-铁素体颗粒在ECAP过程中破碎,UFG钢的Hall-Petch系数降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Metallurgy (Metally)
Russian Metallurgy (Metally) METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
0.70
自引率
25.00%
发文量
140
期刊介绍: Russian Metallurgy (Metally)  publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.
期刊最新文献
Features of the Formation of the Microstructure of Glass–Metal Composite Materials Based on Carbonyl Iron Powder Import Component of the Russian Rare Metal Market Extraction of Platinum from Low-Concentration Refining Nitric Acid Solutions Using Electrolytic and Sulfide Precipitation Effect of Heat Treatment on the Structure and Properties of a D16 Aluminum Alloy Development of Technology and Equipment for Producing the Hot Gas Path Blades of Gas Turbine Engines from Superalloys with a Directional and Single-Crystal Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1