MHD Flow in Simple Cubic Periodic Array Geometry

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Journal of Fusion Energy Pub Date : 2023-12-06 DOI:10.1007/s10894-023-00390-8
L. Buligins, I. Bucenieks, I. Grants, I. Kaldre, K. Kravalis, O. Mikanovskis
{"title":"MHD Flow in Simple Cubic Periodic Array Geometry","authors":"L. Buligins,&nbsp;I. Bucenieks,&nbsp;I. Grants,&nbsp;I. Kaldre,&nbsp;K. Kravalis,&nbsp;O. Mikanovskis","doi":"10.1007/s10894-023-00390-8","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to investigate the behaviour of liquid metal flow in Capillary Porous System (CPS) under strong external magnetic field. Overlapping simple cubic (SC) periodic array of electrically non-conducting spheres with diameter 6 mm and distance between spheres centres 5.6 mm is 3D printed from PLA electrically non-conducting filament. At room temperature, flow of up to 50 mL/s of In–Ga–Sn in pore space in magnetic field of superconducting magnet up to 5T is investigated. Three orientations of magnetic field in relation to the main flow in SC cell are considered—colinear with main flow and perpendicular to it. The values of Reynolds, Hartmann and Stuart numbers in experiment are up to 1160, 90 and 350, respectively. The results indicate that parallel to the main flow orientation of magnetic field has little influence on the flowrate, while perpendicular orientation strongly reduces flowrate with dependence close to 1/Ha, which agrees well with ANSYS Fluent simulations in a unit SC cell, resembling results for channel flow in magnetic field.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"42 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-023-00390-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-023-00390-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to investigate the behaviour of liquid metal flow in Capillary Porous System (CPS) under strong external magnetic field. Overlapping simple cubic (SC) periodic array of electrically non-conducting spheres with diameter 6 mm and distance between spheres centres 5.6 mm is 3D printed from PLA electrically non-conducting filament. At room temperature, flow of up to 50 mL/s of In–Ga–Sn in pore space in magnetic field of superconducting magnet up to 5T is investigated. Three orientations of magnetic field in relation to the main flow in SC cell are considered—colinear with main flow and perpendicular to it. The values of Reynolds, Hartmann and Stuart numbers in experiment are up to 1160, 90 and 350, respectively. The results indicate that parallel to the main flow orientation of magnetic field has little influence on the flowrate, while perpendicular orientation strongly reduces flowrate with dependence close to 1/Ha, which agrees well with ANSYS Fluent simulations in a unit SC cell, resembling results for channel flow in magnetic field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单三次周期阵列几何中的MHD流
本文研究了强外磁场作用下毛细孔系统中液态金属的流动行为。采用聚乳酸(PLA)导电丝3D打印出直径为6毫米、中心间距为5.6毫米的重叠简单立方(SC)导电球体周期阵列。在室温下,研究了在5T超导磁体磁场下in - ga - sn在孔隙空间中高达50 mL/s的流动。考虑了与SC槽内主流有关的磁场的三个方向——与主流共线和垂直于主流。实验中的Reynolds数、Hartmann数和Stuart数分别高达1160、90和350。结果表明,与磁场主流方向平行对流量影响不大,而垂直方向对流量影响较大,且影响程度接近1/Ha,这与ANSYS Fluent在单位SC胞内的模拟结果吻合较好,与磁场作用下通道流的模拟结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
期刊最新文献
Research on Insulation Technology for Nb3Sn Layer Coil of Superconducting Conductor Testing Facility Preliminary Control-Oriented Modeling of the ITER Steering Mirror Assembly and Local Control System in the Electron Cyclotron Heating & Current Drive Actuator High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators Retraction Note: Determination of the Plasma Internal Inductance and Evaluation of its Effects on Plasma Horizontal Displacement in IR-T1 Tokamak Effects of Injected Current Streams on MHD Equilibrium Reconstruction of Local Helicity Injection Plasmas in a Spherical Tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1