Item fit statistics for Rasch analysis: can we trust them?

Marianne Müller
{"title":"Item fit statistics for Rasch analysis: can we trust them?","authors":"Marianne Müller","doi":"10.1186/s40488-020-00108-7","DOIUrl":null,"url":null,"abstract":"To compare fit statistics for the Rasch model based on estimates of unconditional or conditional response probabilities. Using person estimates to calculate fit statistics can lead to problems because the person estimates are biased. Conditional response probabilities given the total person score could be used instead. Data sets are simulated which fit the Rasch model. Type I error rates are calculated and the distributions of the fit statistics are compared with the assumed normal or chi-square distribution. Parametric bootstrap is used to further study the distributions of the fit statistics. Type I error rates for unconditional chi-square statistics are larger than expected even for moderate sample sizes. The conditional chi-square statistics maintain the significance level. Unconditional outfit and infit statistics have asymmetric distributions with means slighly below 1. Conditional outfit and infit statistics have reduced Type I error rates. Conditional residuals should be used. If only unconditional residuals are available parametric bootstrapping is recommended to calculate valid p-values. Bootstrapping is also necessary for conditional outfit statistics. For conditional infit statistics the adjusted rule-of-thumb critical values look useful.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-020-00108-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 35

Abstract

To compare fit statistics for the Rasch model based on estimates of unconditional or conditional response probabilities. Using person estimates to calculate fit statistics can lead to problems because the person estimates are biased. Conditional response probabilities given the total person score could be used instead. Data sets are simulated which fit the Rasch model. Type I error rates are calculated and the distributions of the fit statistics are compared with the assumed normal or chi-square distribution. Parametric bootstrap is used to further study the distributions of the fit statistics. Type I error rates for unconditional chi-square statistics are larger than expected even for moderate sample sizes. The conditional chi-square statistics maintain the significance level. Unconditional outfit and infit statistics have asymmetric distributions with means slighly below 1. Conditional outfit and infit statistics have reduced Type I error rates. Conditional residuals should be used. If only unconditional residuals are available parametric bootstrapping is recommended to calculate valid p-values. Bootstrapping is also necessary for conditional outfit statistics. For conditional infit statistics the adjusted rule-of-thumb critical values look useful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rasch分析的项目拟合统计:我们能相信它们吗?
比较基于无条件或条件反应概率估计的Rasch模型的拟合统计。使用人员估计来计算拟合统计可能会导致问题,因为人员估计是有偏差的。可以使用给出的总得分的条件反应概率。模拟了符合Rasch模型的数据集。计算I型错误率,并将拟合统计量的分布与假设的正态分布或卡方分布进行比较。采用参数自举法进一步研究拟合统计量的分布。即使对于中等样本量,无条件卡方统计的I型错误率也比预期的要大。条件卡方统计量维持显著性水平。无条件装备和非装备统计具有不对称分布,平均值略低于1。条件装备和装配统计减少了I型错误率。应该使用条件残差。如果只有无条件残差可用,建议使用参数引导来计算有效的p值。引导对于条件装备统计也是必要的。对于条件不匹配统计,调整后的经验法则临界值看起来很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A generalization to the log-inverse Weibull distribution and its applications in cancer research Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models Structural properties of generalised Planck distributions New class of Lindley distributions: properties and applications Tolerance intervals in statistical software and robustness under model misspecification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1