Kimberly F. Sellers, Ali Arab, Sean Melville, Fanyu Cui
{"title":"A flexible univariate moving average time-series model for dispersed count data","authors":"Kimberly F. Sellers, Ali Arab, Sean Melville, Fanyu Cui","doi":"10.1186/s40488-021-00115-2","DOIUrl":null,"url":null,"abstract":"Al-Osh and Alzaid (1988) consider a Poisson moving average (PMA) model to describe the relation among integer-valued time series data; this model, however, is constrained by the underlying equi-dispersion assumption for count data (i.e., that the variance and the mean equal). This work instead introduces a flexible integer-valued moving average model for count data that contain over- or under-dispersion via the Conway-Maxwell-Poisson (CMP) distribution and related distributions. This first-order sum-of-Conway-Maxwell-Poissons moving average (SCMPMA(1)) model offers a generalizable construct that includes the PMA (among others) as a special case. We highlight the SCMPMA model properties and illustrate its flexibility via simulated data examples.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-021-00115-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Al-Osh and Alzaid (1988) consider a Poisson moving average (PMA) model to describe the relation among integer-valued time series data; this model, however, is constrained by the underlying equi-dispersion assumption for count data (i.e., that the variance and the mean equal). This work instead introduces a flexible integer-valued moving average model for count data that contain over- or under-dispersion via the Conway-Maxwell-Poisson (CMP) distribution and related distributions. This first-order sum-of-Conway-Maxwell-Poissons moving average (SCMPMA(1)) model offers a generalizable construct that includes the PMA (among others) as a special case. We highlight the SCMPMA model properties and illustrate its flexibility via simulated data examples.