Low-rank-modified Galerkin methods for the Lyapunov equation

Kathryn Lund, Davide Palitta
{"title":"Low-rank-modified Galerkin methods for the Lyapunov equation","authors":"Kathryn Lund, Davide Palitta","doi":"arxiv-2312.00463","DOIUrl":null,"url":null,"abstract":"Of all the possible projection methods for solving large-scale Lyapunov\nmatrix equations, Galerkin approaches remain much more popular than\nPetrov-Galerkin ones. This is mainly due to the different nature of the\nprojected problems stemming from these two families of methods. While a\nGalerkin approach leads to the solution of a low-dimensional matrix equation\nper iteration, a matrix least-squares problem needs to be solved per iteration\nin a Petrov-Galerkin setting. The significant computational cost of these\nleast-squares problems has steered researchers towards Galerkin methods in\nspite of the appealing minimization properties of Petrov-Galerkin schemes. In\nthis paper we introduce a framework that allows for modifying the Galerkin\napproach by low-rank, additive corrections to the projected matrix equation\nproblem with the two-fold goal of attaining monotonic convergence rates similar\nto those of Petrov-Galerkin schemes while maintaining essentially the same\ncomputational cost of the original Galerkin method. We analyze the\nwell-posedness of our framework and determine possible scenarios where we\nexpect the residual norm attained by two low-rank-modified variants to behave\nsimilarly to the one computed by a Petrov-Galerkin technique. A panel of\ndiverse numerical examples shows the behavior and potential of our new\napproach.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin approaches remain much more popular than Petrov-Galerkin ones. This is mainly due to the different nature of the projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a Petrov-Galerkin setting. The significant computational cost of these least-squares problems has steered researchers towards Galerkin methods in spite of the appealing minimization properties of Petrov-Galerkin schemes. In this paper we introduce a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of Petrov-Galerkin schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by two low-rank-modified variants to behave similarly to the one computed by a Petrov-Galerkin technique. A panel of diverse numerical examples shows the behavior and potential of our new approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lyapunov方程的低秩修正Galerkin方法
在所有可能的求解大规模李雅普诺夫矩阵方程的投影方法中,伽辽金方法比petrov -Galerkin方法更受欢迎。这主要是由于这两种方法所产生的预测问题的不同性质。当aGalerkin方法导致每次迭代求解低维矩阵方程时,在Petrov-Galerkin设置中,矩阵最小二乘问题需要每次迭代求解。尽管Petrov-Galerkin格式具有吸引人的最小化特性,但这些最小二乘问题的显著计算成本使研究人员转向Galerkin方法。在本文中,我们引入了一个框架,该框架允许通过对投影矩阵方程问题的低秩加性修正来修改Galerkin方法,其双重目标是获得与Petrov-Galerkin格式相似的单调收敛率,同时保持与原始Galerkin方法基本相同的计算成本。我们分析了框架的适定性,并确定了可能的情况,其中我们期望两个低秩修改变体获得的残差范数与Petrov-Galerkin技术计算的行为相似。一组不同的数值例子显示了我们的新方法的行为和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1