Investigating Graph Invariants for Predicting Properties of Chemical Structures of Antiviral Drugs

IF 2.4 3区 化学 Q2 CHEMISTRY, ORGANIC Polycyclic Aromatic Compounds Pub Date : 2024-11-25 DOI:10.1080/10406638.2023.2283625
Zahra Samiei , Fateme Movahedi
{"title":"Investigating Graph Invariants for Predicting Properties of Chemical Structures of Antiviral Drugs","authors":"Zahra Samiei ,&nbsp;Fateme Movahedi","doi":"10.1080/10406638.2023.2283625","DOIUrl":null,"url":null,"abstract":"<div><div>In the study of the Quantitative Structure-Activity Relationship (QSAR) model, the topological index of a molecular structure as a molecular descriptor is used to analyze their molecular characteristics. Theoretical evaluation of the drug’s molecular structure helps to accelerate the process of design and discovery of drugs by understanding its mechanism of action. In this paper, we study the molecular structure of antiviral drugs, namely, Ritonavir and Lopinavir using the graph theory and the edge-partition approach. We determine the exact formula of some new Sombor-type topological indices and Sombor-type topological coindices of the molecular graph and line graph of the chemical structures of the antiviral drugs Ritonavir and Lopinavir. In this study, we apply Matlab and Mathematica software to evaluate the results and accuracy of calculations. The linear regression approach in the quantitative structure-property relationships model is used to investigate the relationships between Sombor indices and coindices and physicochemical properties.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":"44 10","pages":"Pages 6696-6713"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823021231","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the study of the Quantitative Structure-Activity Relationship (QSAR) model, the topological index of a molecular structure as a molecular descriptor is used to analyze their molecular characteristics. Theoretical evaluation of the drug’s molecular structure helps to accelerate the process of design and discovery of drugs by understanding its mechanism of action. In this paper, we study the molecular structure of antiviral drugs, namely, Ritonavir and Lopinavir using the graph theory and the edge-partition approach. We determine the exact formula of some new Sombor-type topological indices and Sombor-type topological coindices of the molecular graph and line graph of the chemical structures of the antiviral drugs Ritonavir and Lopinavir. In this study, we apply Matlab and Mathematica software to evaluate the results and accuracy of calculations. The linear regression approach in the quantitative structure-property relationships model is used to investigate the relationships between Sombor indices and coindices and physicochemical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究预测抗病毒药物化学结构性质的图不变量
在定量构效关系(QSAR)模型的研究中,利用分子结构的拓扑指数作为分子描述符来分析其分子特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polycyclic Aromatic Compounds
Polycyclic Aromatic Compounds 化学-有机化学
CiteScore
3.70
自引率
20.80%
发文量
412
审稿时长
3 months
期刊介绍: The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.
期刊最新文献
Insight into the Binding Interaction Mechanism of the Ligand M1069 with Human Serum Albumin and A2A Adenosine Receptor—A Biophysical Approach Experimental and Theoretical Studies for Noncovalent Interactions Analysis of 2-Phenyl Imidazole Derivative: Perspective for Anti-Inflammatory Activity Halloysite Nanotube Modified (CuO@HNTs-SO3H) Novel Heterogeneous Catalyst for One-Pot Synthesis of Tetrahydrobenzo[ɑ]Xanthen-11-One Photodegradation of Polycyclic Aromatic Hydrocarbons Under Visible Light Using Modified g-C3N4 as Photocatalyst, Spectroscopic Studies One Pot Synthesis of Thiopyrimidine Derivatives from Lignin Reproductions by Microwave-Assisted Ultrasonic Microscopy with DFT Description for Clarifying the Mass Spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1