{"title":"A novel approach for the fractional SLS material model experimental identification","authors":"Stefano Amadori, Giuseppe Catania","doi":"10.1007/s00397-023-01422-y","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-step, iterative technique for the local non-parametric identification of the standard linear solid (SLS) material model employing fractional order time differential operators is presented. Test input data consists of a set of identified material complex modulus values estimated at different frequency values, obtained from input–output experimental measurements made on a material specimen by means of forced harmonic excitation and from experimental measurements made on the same specimen in quasi-static relaxation conditions. The proposed technique is mainly based on an algebraic procedure leading to the solution of an overdetermined system of linear equations, in order to get the optimal value of the model unknown parameters. The procedure is non-parametric, since the SLS model order is initially unknown. The optimal model size can be found by evaluating the stability properties of the solution associated to any model size and by automatically discarding computational, non-physical contributions. The identification procedure is first validated by means of numerically simulated test data from within known model examples, and then it is applied to some experimentally obtained test data associated to different materials.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"33 - 47"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01422-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01422-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-step, iterative technique for the local non-parametric identification of the standard linear solid (SLS) material model employing fractional order time differential operators is presented. Test input data consists of a set of identified material complex modulus values estimated at different frequency values, obtained from input–output experimental measurements made on a material specimen by means of forced harmonic excitation and from experimental measurements made on the same specimen in quasi-static relaxation conditions. The proposed technique is mainly based on an algebraic procedure leading to the solution of an overdetermined system of linear equations, in order to get the optimal value of the model unknown parameters. The procedure is non-parametric, since the SLS model order is initially unknown. The optimal model size can be found by evaluating the stability properties of the solution associated to any model size and by automatically discarding computational, non-physical contributions. The identification procedure is first validated by means of numerically simulated test data from within known model examples, and then it is applied to some experimentally obtained test data associated to different materials.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."