{"title":"Improving reinforcement learning based moving object grasping with trajectory prediction","authors":"Binzhao Xu, Taimur Hassan, Irfan Hussain","doi":"10.1007/s11370-023-00491-5","DOIUrl":null,"url":null,"abstract":"<p>Currently, most grasping systems are designed to grasp the static objects only, and grasping dynamic objects has received less attention in the literature. For the traditional manipulation scheme, achieving dynamic grasping requires either a highly precise dynamic model or sophisticated predefined grasping states and gestures, both of which are hard to obtain and tedious to design. In this paper, we develop a novel reinforcement learning (RL)-based dynamic grasping framework with a trajectory prediction module to address these issues. In particular, we divide dynamic grasping into two parts: RL-based grasping strategies learning and trajectory prediction. In the simulation setting, an RL agent is trained to grasp a static object. When this well-trained agent is transferred to the real world, the observation has been augmented with the predicted one from an LSTM-based trajectory prediction module. We validated the proposed method through an experimental setup involving a Baxter manipulator with two finger grippers and an object placed on a moving car. We also evaluated how well RL performs both with and without our intended trajectory prediction. Experiment results demonstrate that our method can grasp the object on different trajectories at various speeds.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"23 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00491-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, most grasping systems are designed to grasp the static objects only, and grasping dynamic objects has received less attention in the literature. For the traditional manipulation scheme, achieving dynamic grasping requires either a highly precise dynamic model or sophisticated predefined grasping states and gestures, both of which are hard to obtain and tedious to design. In this paper, we develop a novel reinforcement learning (RL)-based dynamic grasping framework with a trajectory prediction module to address these issues. In particular, we divide dynamic grasping into two parts: RL-based grasping strategies learning and trajectory prediction. In the simulation setting, an RL agent is trained to grasp a static object. When this well-trained agent is transferred to the real world, the observation has been augmented with the predicted one from an LSTM-based trajectory prediction module. We validated the proposed method through an experimental setup involving a Baxter manipulator with two finger grippers and an object placed on a moving car. We also evaluated how well RL performs both with and without our intended trajectory prediction. Experiment results demonstrate that our method can grasp the object on different trajectories at various speeds.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).