{"title":"Efficient LiDAR/inertial-based localization with prior map for autonomous robots","authors":"Jian Song, Yutian Chen, Xun Liu, Nan Zheng","doi":"10.1007/s11370-023-00490-6","DOIUrl":null,"url":null,"abstract":"<p>A rapid and accurate localization scheme is significant for the application of autonomous robots in a prior map. However, this task remains challenging in the real-time requirement due to the complex scan matching. This paper proposes an efficient LiDAR/inertial-based localization method that simplifies the process of scan matching. Firstly, it constructs KD-tree architectures for the prior map in advance and selects sparse point cloud as local map through a novel refined neighborhood search. Then, to ensure the reliability of localization, this method removes the dynamic points in the prior map by the comparison between newly laser scan and the local map. The pose transformation is calculated by the scan matching of edge and planar points from static objects. Finally, this method introduces a uniform motion model to correct the wrong initial guess from incorrect inertial data pre-integration. Three prior maps are collected from typical scenarios through intelligent inspection robot to verify the robustness of proposed method. Experimental results show that the proposed method not only achieves high accuracy of centimeter-level deviation in localization, but takes less than 0.01 s to complete the pose matching when the LiDAR rate is 20 Hz.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"23 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00490-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A rapid and accurate localization scheme is significant for the application of autonomous robots in a prior map. However, this task remains challenging in the real-time requirement due to the complex scan matching. This paper proposes an efficient LiDAR/inertial-based localization method that simplifies the process of scan matching. Firstly, it constructs KD-tree architectures for the prior map in advance and selects sparse point cloud as local map through a novel refined neighborhood search. Then, to ensure the reliability of localization, this method removes the dynamic points in the prior map by the comparison between newly laser scan and the local map. The pose transformation is calculated by the scan matching of edge and planar points from static objects. Finally, this method introduces a uniform motion model to correct the wrong initial guess from incorrect inertial data pre-integration. Three prior maps are collected from typical scenarios through intelligent inspection robot to verify the robustness of proposed method. Experimental results show that the proposed method not only achieves high accuracy of centimeter-level deviation in localization, but takes less than 0.01 s to complete the pose matching when the LiDAR rate is 20 Hz.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).