{"title":"Real-time monocular visual–inertial SLAM with structural constraints of line and point–line fusion","authors":"Shaoshao Wang, Aihua Zhang, Zhiqiang Zhang, Xudong Zhao","doi":"10.1007/s11370-023-00492-4","DOIUrl":null,"url":null,"abstract":"<p>In order to solve the problem of poor performance of traditional point feature algorithm under low texture and poor illumination, this paper presents a new visual SLAM method based on point–line fusion of line structure constraint. This method first uses an algorithm for homogeneity to process the extracted point features, solving the traditional problem of excessive aggregation and overlap of corner points, which makes the visual front end better able to obtain environmental information. In addition, improved line extraction method algorithm by using the strategy of eliminating the line length makes the line extraction performance twice as efficient as the LSD algorithm, the optical flow tracking algorithm is used to replace the traditional matching algorithm to reduce the running time of the system. In particular, the paper proposes a new constraint on the position of the spatially extracted lines, using the parallelism of 3D lines to correct for degraded lines in the projection process, and adding a new constraint on the line structure to the error function of the whole system, the newly constructed error function is optimized by sliding window, which significantly improves the accuracy and completeness of the whole system in constructing maps. Finally, the performance of the algorithm was tested on a publicly available dataset. The experimental results show that our algorithm performs well in point extraction and matching, the proposed point–line fusion system is better than the popular VINS-mono and PL-VINS algorithms in terms of running time, quality of information obtained, and positioning accuracy.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"142 ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00492-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of poor performance of traditional point feature algorithm under low texture and poor illumination, this paper presents a new visual SLAM method based on point–line fusion of line structure constraint. This method first uses an algorithm for homogeneity to process the extracted point features, solving the traditional problem of excessive aggregation and overlap of corner points, which makes the visual front end better able to obtain environmental information. In addition, improved line extraction method algorithm by using the strategy of eliminating the line length makes the line extraction performance twice as efficient as the LSD algorithm, the optical flow tracking algorithm is used to replace the traditional matching algorithm to reduce the running time of the system. In particular, the paper proposes a new constraint on the position of the spatially extracted lines, using the parallelism of 3D lines to correct for degraded lines in the projection process, and adding a new constraint on the line structure to the error function of the whole system, the newly constructed error function is optimized by sliding window, which significantly improves the accuracy and completeness of the whole system in constructing maps. Finally, the performance of the algorithm was tested on a publicly available dataset. The experimental results show that our algorithm performs well in point extraction and matching, the proposed point–line fusion system is better than the popular VINS-mono and PL-VINS algorithms in terms of running time, quality of information obtained, and positioning accuracy.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).