Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory Architectures

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2023-03-21 DOI:https://dl.acm.org/doi/10.1145/3573383
Gregorio Quintana-Ortí, Fernando Hernando, Francisco D. Igual
{"title":"Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory Architectures","authors":"Gregorio Quintana-Ortí, Fernando Hernando, Francisco D. Igual","doi":"https://dl.acm.org/doi/10.1145/3573383","DOIUrl":null,"url":null,"abstract":"<p>The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–Zimmermann algorithm for distributed-memory architectures for computing the minimum distance of a random linear code over 𝔽<sub>2</sub>. Both current commercial and public-domain software only work on either unicore architectures or shared-memory architectures, which are limited in the number of cores/processors employed in the computation. Our implementations focus on distributed-memory architectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum distance. Our experimental results show that our implementations are much faster, even up to several orders of magnitude, than current implementations widely used nowadays.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"35 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3573383","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–Zimmermann algorithm for distributed-memory architectures for computing the minimum distance of a random linear code over 𝔽2. Both current commercial and public-domain software only work on either unicore architectures or shared-memory architectures, which are limited in the number of cores/processors employed in the computation. Our implementations focus on distributed-memory architectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum distance. Our experimental results show that our implementations are much faster, even up to several orders of magnitude, than current implementations widely used nowadays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法1033:分布式存储结构下随机线性码最小距离计算的并行实现
线性码的最小距离是信息论中的一个重要概念。因此,其计算所需的时间对于该领域的许多问题都是非常重要的。在本文中,我们将介绍用于计算𝔽2上随机线性代码的最小距离的分布式内存架构的browser - zimmermann算法的一系列实现。当前的商业和公共领域软件都只能在单核架构或共享内存架构上工作,这在计算中使用的核心/处理器数量上是有限的。我们的实现侧重于分布式内存架构,因此能够在最小距离的计算中使用数百甚至数千个内核。我们的实验结果表明,我们的实现比目前广泛使用的实现要快得多,甚至可以达到几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1