Big technology and data privacy

IF 2 2区 经济学 Q2 ECONOMICS Cambridge Journal of Economics Pub Date : 2023-01-14 DOI:10.1093/cje/beac052
Martin J Conyon
{"title":"Big technology and data privacy","authors":"Martin J Conyon","doi":"10.1093/cje/beac052","DOIUrl":null,"url":null,"abstract":"This paper discusses big technology and data privacy. First, we show the rapid rise in technology firms since the millennium. Using Facebook as a case study (the most popular social network in 2022), we show its reliance on personally identifiable data collection and advertising. Second, we investigate the Cambridge Analytica data breach. We show that stock prices fall in response to the data breach using event study methods. Cumulative abnormal returns decline by about 9.8% in the event window. Third, we discuss policy options in response to data privacy concerns. The GDPR provides a legislative model for protecting individually identifiable data.","PeriodicalId":48156,"journal":{"name":"Cambridge Journal of Economics","volume":"297 ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/cje/beac052","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses big technology and data privacy. First, we show the rapid rise in technology firms since the millennium. Using Facebook as a case study (the most popular social network in 2022), we show its reliance on personally identifiable data collection and advertising. Second, we investigate the Cambridge Analytica data breach. We show that stock prices fall in response to the data breach using event study methods. Cumulative abnormal returns decline by about 9.8% in the event window. Third, we discuss policy options in response to data privacy concerns. The GDPR provides a legislative model for protecting individually identifiable data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大技术和数据隐私
本文讨论了大技术与数据隐私。首先,我们展示了自千禧年以来科技公司的迅速崛起。以Facebook为例(2022年最受欢迎的社交网络),我们展示了它对个人身份数据收集和广告的依赖。其次,我们调查剑桥分析公司的数据泄露事件。我们使用事件研究方法表明,股票价格会因数据泄露而下跌。事件窗口期累计异常收益下降约9.8%。第三,我们讨论了应对数据隐私问题的政策选择。GDPR为保护个人可识别数据提供了立法模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
5.00%
发文量
54
期刊介绍: The Cambridge Journal of Economics, founded in 1977 in the traditions of Marx, Keynes, Kalecki, Joan Robinson and Kaldor, provides a forum for theoretical, applied, policy and methodological research into social and economic issues. Its focus includes: •the organisation of social production and the distribution of its product •the causes and consequences of gender, ethnic, class and national inequities •inflation and unemployment •the changing forms and boundaries of markets and planning •uneven development and world market instability •globalisation and international integration.
期刊最新文献
Economic growth and the foreign sector: Peru 1821–2020 Asymmetrical, symmetrical and artifactual man: group size and cooperation in James Buchanan’s constitutional economics Polyarchy and societas: an extended continuum of discrete structural alternatives What politics does to the economic analysis of the employment relationship: a critical perspective on personnel economics Truth or coherence? How Adam Smith used philosophical sources to explain how paradigms change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1