Mixture of experts distributional regression: implementation using robust estimation with adaptive first-order methods

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-11-15 DOI:10.1007/s10182-023-00486-8
David Rügamer, Florian Pfisterer, Bernd Bischl, Bettina Grün
{"title":"Mixture of experts distributional regression: implementation using robust estimation with adaptive first-order methods","authors":"David Rügamer,&nbsp;Florian Pfisterer,&nbsp;Bernd Bischl,&nbsp;Bettina Grün","doi":"10.1007/s10182-023-00486-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose an efficient implementation of mixtures of experts distributional regression models which exploits robust estimation by using stochastic first-order optimization techniques with adaptive learning rate schedulers. We take advantage of the flexibility and scalability of neural network software and implement the proposed framework in <i>mixdistreg</i>, an <span>R</span> software package that allows for the definition of mixtures of many different families, estimation in high-dimensional and large sample size settings and robust optimization based on TensorFlow. Numerical experiments with simulated and real-world data applications show that optimization is as reliable as estimation via classical approaches in many different settings and that results may be obtained for complicated scenarios where classical approaches consistently fail.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-023-00486-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00486-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose an efficient implementation of mixtures of experts distributional regression models which exploits robust estimation by using stochastic first-order optimization techniques with adaptive learning rate schedulers. We take advantage of the flexibility and scalability of neural network software and implement the proposed framework in mixdistreg, an R software package that allows for the definition of mixtures of many different families, estimation in high-dimensional and large sample size settings and robust optimization based on TensorFlow. Numerical experiments with simulated and real-world data applications show that optimization is as reliable as estimation via classical approaches in many different settings and that results may be obtained for complicated scenarios where classical approaches consistently fail.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合专家分布回归:采用自适应一阶方法的稳健估计实现
在这项工作中,我们提出了一种有效的专家混合分布回归模型的实现,该模型通过使用随机一阶优化技术和自适应学习率调度程序来利用鲁棒估计。我们利用神经网络软件的灵活性和可扩展性,并在mixdistreg中实现所提出的框架,mixdistreg是一个R软件包,允许定义许多不同家族的混合物,在高维和大样本设置中进行估计,并基于TensorFlow进行鲁棒优化。模拟和真实数据应用的数值实验表明,在许多不同的设置中,优化与通过经典方法进行估计一样可靠,并且在经典方法始终失败的复杂场景中可能获得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1