Estimating Stellar Parameters and Identifying Very Metal-poor Stars for Low-resolution Spectra (R ∼ 200)

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2023-11-28 DOI:10.1017/pasa.2023.59
Tianmin Wu, Yude Bu, Jianhang Xie, Junchao Liang, Wei Liu, Zhenping Yi, Xiaoming Kong, Meng Liu
{"title":"Estimating Stellar Parameters and Identifying Very Metal-poor Stars for Low-resolution Spectra (R ∼ 200)","authors":"Tianmin Wu, Yude Bu, Jianhang Xie, Junchao Liang, Wei Liu, Zhenping Yi, Xiaoming Kong, Meng Liu","doi":"10.1017/pasa.2023.59","DOIUrl":null,"url":null,"abstract":"Very metal-poor (VMP, [Fe/H]&lt;-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters (<jats:italic>T</jats:italic><jats:sub>eff</jats:sub> , log g, and [Fe/H]) for low-resolution spectra similar to the CSST spectra (<jats:italic>R</jats:italic> ∼ 200). This study introduces a novel two-dimensional Convolutional Neural Network (CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating stellar parameters, particularly metallicity, from low-resolution spectra (<jats:italic>R</jats:italic> ∼ 200), with a specific focus on enhancing the search for VMP stars within the CSST spectral data. We mainly use 10,008 spectra of VMP stars from LAMOST DR3, and 16,638 spectra of non-VMP stars ([Fe/H]&gt;-2.0) from LAMOST DR8 for the experiments and apply random forest and support vector machine methods to make comparisons. The resolution of all spectra is reduced to <jats:italic>R</jats:italic> ∼ 200 to match the resolution of the CSST, followed by preprocessing and transformation into two-dimensional spectra for input into the CNN model. The validation and practicality of this model are also tested on the MARCS synthetic spectra. The results show that using the CNN model constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for <jats:italic>T</jats:italic><jats:sub>eff</jats:sub> , 0.22 dex for log g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNN model can efficiently identify VMP stars with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness of the proposed CNN model in estimating stellar parameters for low-resolution spectra (<jats:italic>R</jats:italic> ∼ 200) and recognizing VMP stars that are of interest for stellar population and galactic evolution work.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2023.59","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Very metal-poor (VMP, [Fe/H]<-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters (Teff , log g, and [Fe/H]) for low-resolution spectra similar to the CSST spectra (R ∼ 200). This study introduces a novel two-dimensional Convolutional Neural Network (CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating stellar parameters, particularly metallicity, from low-resolution spectra (R ∼ 200), with a specific focus on enhancing the search for VMP stars within the CSST spectral data. We mainly use 10,008 spectra of VMP stars from LAMOST DR3, and 16,638 spectra of non-VMP stars ([Fe/H]>-2.0) from LAMOST DR8 for the experiments and apply random forest and support vector machine methods to make comparisons. The resolution of all spectra is reduced to R ∼ 200 to match the resolution of the CSST, followed by preprocessing and transformation into two-dimensional spectra for input into the CNN model. The validation and practicality of this model are also tested on the MARCS synthetic spectra. The results show that using the CNN model constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for Teff , 0.22 dex for log g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNN model can efficiently identify VMP stars with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness of the proposed CNN model in estimating stellar parameters for low-resolution spectra (R ∼ 200) and recognizing VMP stars that are of interest for stellar population and galactic evolution work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低分辨率光谱(R ~ 200)的恒星参数估算与极贫金属恒星识别
极贫金属(VMP, [Fe/H]<-2.0)恒星是了解早期星系中形成的第一代恒星的性质和演化的宝贵资源。即将到来的中国空间站望远镜(CSST)将为我们提供大量可能包含大量VMP恒星的光谱数据,因此确定与CSST光谱(R ~ 200)相似的低分辨率光谱的恒星大气参数(Teff, log g和[Fe/H])至关重要。本文提出了一种新的二维卷积神经网络(CNN)模型,该模型由三个卷积层和两个全连接层组成。通过低分辨率光谱(R ~ 200)估计恒星参数,特别是金属丰度,评估了该模型的熟练程度,并特别关注在CSST光谱数据中加强对VMP恒星的搜索。我们主要使用LAMOST DR3的10,008个VMP恒星光谱和LAMOST DR8的16,638个非VMP恒星([Fe/H]>-2.0)光谱进行实验,并采用随机森林和支持向量机方法进行比较。所有光谱的分辨率被降低到R ~ 200,以匹配CSST的分辨率,然后进行预处理和转换成二维光谱输入到CNN模型中。在MARCS合成光谱上验证了该模型的有效性和实用性。结果表明,使用本文构建的CNN模型,在测试集上Teff的平均绝对误差(Mean Absolute Error, MAE)为99.40 K, log g为0.22 index, [Fe/H]为0.14 index, [C/Fe]为0.26 index。此外,CNN模型可以有效地识别VMP恒星,准确率为94.77%,召回率为93.73%,准确率为95.70%。本文有力地证明了所提出的CNN模型在估计低分辨率光谱(R ~ 200)的恒星参数和识别对恒星群和星系演化工作感兴趣的VMP恒星方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1